neural-breaks / app.py
patchbanks's picture
Update app.py
1f2999d verified
raw
history blame
9.37 kB
import os
import pickle
import torch
import random
import subprocess
import re
import pretty_midi
import gradio as gr
from contextlib import nullcontext
from model import GPTConfig, GPT
from pedalboard import Pedalboard, Reverb, Compressor, Gain, Limiter
from pedalboard.io import AudioFile
import gradio as gr
import spaces
in_space = os.getenv("SYSTEM") == "spaces"
temp_dir = 'temp'
os.makedirs(temp_dir, exist_ok=True)
init_from = 'resume'
out_dir = 'checkpoints'
ckpt_load = 'model.pt'
start = "000000000000\n"
num_samples = 1
max_new_tokens = 768
seed = random.randint(1, 100000)
torch.manual_seed(seed)
device = 'cpu' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16'
compile = False
exec(open('configurator.py').read())
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device_type = 'cpu' if 'cuda' in device else 'cpu'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
if init_from == 'resume':
ckpt_path = os.path.join(out_dir, ckpt_load)
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
gptconf = GPTConfig(**checkpoint['model_args'])
model = GPT(gptconf)
state_dict = checkpoint['model']
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
model.load_state_dict(state_dict)
elif init_from.startswith('gpt2'):
model = GPT.from_pretrained(init_from, dict(dropout=0.0))
model.eval()
model.to(device)
if compile:
model = torch.compile(model)
tokenizer = re.compile(r'000000000000|\d{2}|\n')
meta_path = os.path.join('data', checkpoint['config']['dataset'], 'meta.pkl')
with open(meta_path, 'rb') as f:
meta = pickle.load(f)
stoi = meta.get('stoi', None)
itos = meta.get('itos', None)
def encode(text):
matches = tokenizer.findall(text)
return [stoi[c] for c in matches]
def decode(encoded):
return ''.join([itos[i] for i in encoded])
def clear_midi(dir):
for file in os.listdir(dir):
if file.endswith('.mid'):
os.remove(os.path.join(dir, file))
clear_midi(temp_dir)
def generate_midi(temperature, top_k):
start_ids = encode(start)
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
midi_events = []
seq_count = 0
with torch.no_grad():
for _ in range(num_samples):
sequence = []
y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
tkn_seq = decode(y[0].tolist())
lines = tkn_seq.splitlines()
for event in lines:
if event.startswith(start.strip()):
if sequence:
midi_events.append(sequence)
sequence = []
seq_count += 1
elif event.strip() == "":
continue
else:
try:
p = int(event[0:2])
v = int(event[2:4])
s = int(event[4:8])
e = int(event[8:12])
except ValueError:
p, v, s, e = 0, 0, 0, 0
sequence.append({'file_name': f'nanompc_{seq_count:02d}', 'pitch': p, 'velocity': v, 'start': s, 'end': e})
if sequence:
midi_events.append(sequence)
round_bars = []
for sequence in midi_events:
filtered_sequence = []
for event in sequence:
if event['start'] < 1536 and event['end'] <= 1536:
filtered_sequence.append(event)
if filtered_sequence:
round_bars.append(filtered_sequence)
midi_events = round_bars
for track in midi_events:
track.sort(key=lambda x: x['start'])
unique_notes = []
for note in track:
if not any(abs(note['start'] - n['start']) < 12 and note['pitch'] == n['pitch'] for n in unique_notes):
unique_notes.append(note)
track[:] = unique_notes
return midi_events
def write_single_midi(midi_events, bpm):
midi_data = pretty_midi.PrettyMIDI(initial_tempo=bpm, resolution=96)
midi_data.time_signature_changes.append(pretty_midi.containers.TimeSignature(4, 4, 0))
instrument = pretty_midi.Instrument(0)
midi_data.instruments.append(instrument)
for event in midi_events[0]:
pitch = event['pitch']
velocity = event['velocity']
start = midi_data.tick_to_time(event['start'])
end = midi_data.tick_to_time(event['end'])
note = pretty_midi.Note(pitch=pitch, velocity=velocity, start=start, end=end)
instrument.notes.append(note)
midi_path = os.path.join(temp_dir, 'output.mid')
midi_data.write(midi_path)
print(f"Generated: {midi_path}")
def render_wav(midi_file, uploaded_sf2=None, output_level='2.0'):
sf2_dir = 'sf2_kits'
audio_format = 's16'
sample_rate = '44100'
gain = str(output_level)
if uploaded_sf2:
sf2_file = uploaded_sf2
else:
sf2_files = [f for f in os.listdir(os.path.join(sf2_dir)) if f.endswith('.sf2')]
if not sf2_files:
raise ValueError("No SoundFont (.sf2) file found in directory.")
sf2_file = os.path.join(sf2_dir, random.choice(sf2_files))
output_wav = os.path.join(temp_dir, 'output.wav')
with open(os.devnull, 'w') as devnull:
command = [
'fluidsynth', '-ni', sf2_file, midi_file, '-F', output_wav, '-r', str(sample_rate),
'-o', f'audio.file.format={audio_format}', '-g', str(gain)
]
subprocess.call(command, stdout=devnull, stderr=devnull)
return output_wav
def generate_and_return_files(bpm, temperature, top_k, uploaded_sf2=None, output_level='2.0'):
midi_events = generate_midi(temperature, top_k)
if not midi_events:
return "Error generating MIDI.", None, None
write_single_midi(midi_events, bpm)
midi_file = os.path.join(temp_dir, 'output.mid')
wav_raw = render_wav(midi_file, uploaded_sf2, output_level)
wav_fx = os.path.join(temp_dir, 'output_fx.wav')
sfx_settings = [
{
'board': Pedalboard([
Reverb(room_size=0.01, wet_level=random.uniform(0.005, 0.01), dry_level=0.75, width=1.0),
Compressor(threshold_db=-3.0, ratio=8.0, attack_ms=0.0, release_ms=300.0),
])
}
]
for setting in sfx_settings:
board = setting['board']
with AudioFile(wav_raw) as f:
with AudioFile(wav_fx, 'w', f.samplerate, f.num_channels) as o:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
return midi_file, wav_fx
custom_css = """
#container {
max-width: 1200px !important;
margin: 0 auto !important;
}
#generate-btn {
font-size: 18px;
color: white;
padding: 10px 20px;
border: none;
border-radius: 5px;
cursor: pointer;
background: linear-gradient(90deg, hsla(268, 90%, 70%, 1) 0%, hsla(260, 72%, 74%, 1) 50%, hsla(247, 73%, 65%, 1) 100%);
transition: background 1s ease;
}
#generate-btn:hover {
color: white;
background: linear-gradient(90deg, hsla(268, 90%, 62%, 1) 0%, hsla(260, 70%, 70%, 1) 50%, hsla(247, 73%, 55%, 1) 100%);
}
#container .prose {
text-align: center !important;
}
#container h1 {
font-weight: bold;
font-size: 40px;
margin: 0px;
}
#container p {
font-size: 18px;
text-align: center;
}
"""
with gr.Blocks(
css=custom_css,
theme=gr.themes.Default(
font=[gr.themes.GoogleFont("Roboto"), "sans-serif"],
primary_hue="violet",
secondary_hue="violet"
)
) as iface:
with gr.Column(elem_id="container"):
gr.Markdown("<h1>Neural Breaks</h1>")
gr.Markdown("<p>Neural Breaks is a generative MIDI model trained on dynamic transcriptions of funk and soul drum breaks.</p>")
bpm = gr.Slider(minimum=50, maximum=200, step=1, value=100, label="BPM")
temperature = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Temperature")
top_k = gr.Slider(minimum=4, maximum=16, step=1, value=8, label="Top-k")
output_level = gr.Slider(minimum=0, maximum=3, step=0.10, value=2.0, label="Output Gain")
generate_button = gr.Button("Generate", elem_id="generate-btn")
midi_file = gr.File(label="MIDI Output")
audio_file = gr.Audio(label="Audio Output", type="filepath")
soundfont = gr.File(label="Optional: Upload SoundFont (preset=0, bank=0)")
generate_button.click(
fn=generate_and_return_files,
inputs=[bpm, temperature, top_k, soundfont, output_level],
outputs=[midi_file, audio_file]
)
gr.Markdown("<p style='font-size: 16px;'>Developed by <a href='https://www.patchbanks.com/' target='_blank'><strong>Patchbanks</strong></a></p>")
iface.launch(share=True)