neural-breaks / model.py
patchbanks's picture
Upload 18 files
8df70dd verified
raw
history blame
11.8 kB
import inspect
from dataclasses import dataclass
from torch.utils.data import DataLoader, Dataset
from torch.nn import functional as F
import torch.nn as nn
import torch
import math
import numpy as np
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.config = config # Store the config object
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.rel_attn_bias = nn.Embedding(config.block_size * 2 - 1, config.n_head)
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
attn_logits = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
else:
attn_logits = (q @ k.transpose(-2, -1)) / math.sqrt(C // self.n_head)
max_rpe = self.config.block_size // 2 # Use config object
rpe_matrix = self.generate_rpe(T, max_rpe).to(x.device)
rpe_embeddings = self.rel_attn_bias(rpe_matrix).transpose(1, 2).unsqueeze(0)
attn_logits = attn_logits + rpe_embeddings
attn_logits = attn_logits.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
attn_logits = F.softmax(attn_logits, dim=-1)
attn_logits = self.attn_dropout(attn_logits)
attn_logits = attn_logits @ v
y = attn_logits.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
def generate_rpe(self, length, max_rpe):
range_vec = torch.arange(length)
range_mat = range_vec.unsqueeze(0) - range_vec.unsqueeze(1)
range_mat_clipped = torch.clamp(range_mat, -max_rpe, max_rpe)
final_mat = range_mat_clipped + max_rpe
return final_mat
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = RMSNorm(config.n_embd, eps=1e-5)
self.attn = CausalSelfAttention(config)
self.ln_2 = RMSNorm(config.n_embd, eps=1e-5)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = True
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = RMSNorm(config.n_embd, eps=1e-5),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
#print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
def get_num_params(self, non_embedding=True):
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None, noise_pct=0.1):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
# add noise to the input
if noise_pct > 0.0:
noise_std = torch.std(tok_emb) * noise_pct
noise = torch.randn_like(tok_emb) * noise_std
tok_emb = tok_emb + noise
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss
def crop_block_size(self, block_size):
assert block_size <= self.config.block_size
self.config.block_size = block_size
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
for block in self.transformer.h:
if hasattr(block.attn, 'bias'):
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
@classmethod
def from_pretrained(cls, model_type, override_args=None):
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
override_args = override_args or {}
assert all(k == 'dropout' for k in override_args)
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600),
}[model_type]
print("forcing vocab_size=50257, block_size=1024, bias=True")
config_args['vocab_size'] = 50257
config_args['block_size'] = 1024
config_args['bias'] = True
if 'dropout' in override_args:
print(f"overriding dropout rate to {override_args['dropout']}")
config_args['dropout'] = override_args['dropout']
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')]
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')]
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
N = self.get_num_params()
cfg = self.config
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
flops_per_token = 6*N + 12*L*H*Q*T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
flops_achieved = flops_per_iter * (1.0/dt)
flops_promised = 312e12
mfu = flops_achieved / flops_promised
return mfu
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
if idx_next.item() == 0: # stop token
break
idx = torch.cat((idx, idx_next), dim=1)
return idx