Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
from dataclasses import dataclass | |
from torch.utils.data import DataLoader, Dataset | |
from torch.nn import functional as F | |
import torch.nn as nn | |
import torch | |
import math | |
import numpy as np | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
self.config = config # Store the config object | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.dropout = config.dropout | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) | |
self.attn_dropout = nn.Dropout(config.dropout) | |
self.resid_dropout = nn.Dropout(config.dropout) | |
self.rel_attn_bias = nn.Embedding(config.block_size * 2 - 1, config.n_head) | |
def forward(self, x): | |
B, T, C = x.size() | |
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): | |
attn_logits = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) | |
else: | |
attn_logits = (q @ k.transpose(-2, -1)) / math.sqrt(C // self.n_head) | |
max_rpe = self.config.block_size // 2 # Use config object | |
rpe_matrix = self.generate_rpe(T, max_rpe).to(x.device) | |
rpe_embeddings = self.rel_attn_bias(rpe_matrix).transpose(1, 2).unsqueeze(0) | |
attn_logits = attn_logits + rpe_embeddings | |
attn_logits = attn_logits.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) | |
attn_logits = F.softmax(attn_logits, dim=-1) | |
attn_logits = self.attn_dropout(attn_logits) | |
attn_logits = attn_logits @ v | |
y = attn_logits.transpose(1, 2).contiguous().view(B, T, C) | |
y = self.resid_dropout(self.c_proj(y)) | |
return y | |
def generate_rpe(self, length, max_rpe): | |
range_vec = torch.arange(length) | |
range_mat = range_vec.unsqueeze(0) - range_vec.unsqueeze(1) | |
range_mat_clipped = torch.clamp(range_mat, -max_rpe, max_rpe) | |
final_mat = range_mat_clipped + max_rpe | |
return final_mat | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) | |
self.gelu = nn.GELU() | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) | |
self.dropout = nn.Dropout(config.dropout) | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
x = self.dropout(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = RMSNorm(config.n_embd, eps=1e-5) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = RMSNorm(config.n_embd, eps=1e-5) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50304 | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
dropout: float = 0.0 | |
bias: bool = True | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.vocab_size is not None | |
assert config.block_size is not None | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
drop = nn.Dropout(config.dropout), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = RMSNorm(config.n_embd, eps=1e-5), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
for pn, p in self.named_parameters(): | |
if pn.endswith('c_proj.weight'): | |
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) | |
#print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) | |
def get_num_params(self, non_embedding=True): | |
n_params = sum(p.numel() for p in self.parameters()) | |
if non_embedding: | |
n_params -= self.transformer.wpe.weight.numel() | |
return n_params | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None, noise_pct=0.1): | |
device = idx.device | |
b, t = idx.size() | |
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, t, dtype=torch.long, device=device) | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
# add noise to the input | |
if noise_pct > 0.0: | |
noise_std = torch.std(tok_emb) * noise_pct | |
noise = torch.randn_like(tok_emb) * noise_std | |
tok_emb = tok_emb + noise | |
x = self.transformer.drop(tok_emb + pos_emb) | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
if targets is not None: | |
logits = self.lm_head(x) | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
else: | |
logits = self.lm_head(x[:, [-1], :]) | |
loss = None | |
return logits, loss | |
def crop_block_size(self, block_size): | |
assert block_size <= self.config.block_size | |
self.config.block_size = block_size | |
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) | |
for block in self.transformer.h: | |
if hasattr(block.attn, 'bias'): | |
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] | |
def from_pretrained(cls, model_type, override_args=None): | |
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} | |
override_args = override_args or {} | |
assert all(k == 'dropout' for k in override_args) | |
from transformers import GPT2LMHeadModel | |
print("loading weights from pretrained gpt: %s" % model_type) | |
config_args = { | |
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), | |
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), | |
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), | |
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), | |
}[model_type] | |
print("forcing vocab_size=50257, block_size=1024, bias=True") | |
config_args['vocab_size'] = 50257 | |
config_args['block_size'] = 1024 | |
config_args['bias'] = True | |
if 'dropout' in override_args: | |
print(f"overriding dropout rate to {override_args['dropout']}") | |
config_args['dropout'] = override_args['dropout'] | |
config = GPTConfig(**config_args) | |
model = GPT(config) | |
sd = model.state_dict() | |
sd_keys = sd.keys() | |
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] | |
model_hf = GPT2LMHeadModel.from_pretrained(model_type) | |
sd_hf = model_hf.state_dict() | |
sd_keys_hf = sd_hf.keys() | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] | |
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] | |
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" | |
for k in sd_keys_hf: | |
if any(k.endswith(w) for w in transposed): | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
return model | |
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): | |
param_dict = {pn: p for pn, p in self.named_parameters()} | |
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} | |
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] | |
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] | |
optim_groups = [ | |
{'params': decay_params, 'weight_decay': weight_decay}, | |
{'params': nodecay_params, 'weight_decay': 0.0} | |
] | |
num_decay_params = sum(p.numel() for p in decay_params) | |
num_nodecay_params = sum(p.numel() for p in nodecay_params) | |
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") | |
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") | |
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters | |
use_fused = fused_available and device_type == 'cuda' | |
extra_args = dict(fused=True) if use_fused else dict() | |
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) | |
print(f"using fused AdamW: {use_fused}") | |
return optimizer | |
def estimate_mfu(self, fwdbwd_per_iter, dt): | |
""" estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ | |
N = self.get_num_params() | |
cfg = self.config | |
L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size | |
flops_per_token = 6*N + 12*L*H*Q*T | |
flops_per_fwdbwd = flops_per_token * T | |
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter | |
flops_achieved = flops_per_iter * (1.0/dt) | |
flops_promised = 312e12 | |
mfu = flops_achieved / flops_promised | |
return mfu | |
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
for _ in range(max_new_tokens): | |
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | |
logits, _ = self(idx_cond) | |
logits = logits[:, -1, :] / temperature | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
logits[logits < v[:, [-1]]] = -float('Inf') | |
probs = F.softmax(logits, dim=-1) | |
idx_next = torch.multinomial(probs, num_samples=1) | |
if idx_next.item() == 0: # stop token | |
break | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |