DR-App / object_detection /utils /variables_helper_test.py
pat229988's picture
Upload 653 files
9a393e2
raw
history blame
9.69 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.utils.variables_helper."""
import os
import tensorflow as tf
from object_detection.utils import variables_helper
class FilterVariablesTest(tf.test.TestCase):
def _create_variables(self):
return [tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights'),
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/biases'),
tf.Variable(1.0, name='StackProposalGenerator/weights'),
tf.Variable(1.0, name='StackProposalGenerator/biases')]
def test_return_all_variables_when_empty_regex(self):
variables = self._create_variables()
out_variables = variables_helper.filter_variables(variables, [''])
self.assertItemsEqual(out_variables, variables)
def test_return_variables_which_do_not_match_single_regex(self):
variables = self._create_variables()
out_variables = variables_helper.filter_variables(variables,
['FeatureExtractor/.*'])
self.assertItemsEqual(out_variables, variables[2:])
def test_return_variables_which_do_not_match_any_regex_in_list(self):
variables = self._create_variables()
out_variables = variables_helper.filter_variables(variables, [
'FeatureExtractor.*biases', 'StackProposalGenerator.*biases'
])
self.assertItemsEqual(out_variables, [variables[0], variables[2]])
def test_return_variables_matching_empty_regex_list(self):
variables = self._create_variables()
out_variables = variables_helper.filter_variables(
variables, [''], invert=True)
self.assertItemsEqual(out_variables, [])
def test_return_variables_matching_some_regex_in_list(self):
variables = self._create_variables()
out_variables = variables_helper.filter_variables(
variables,
['FeatureExtractor.*biases', 'StackProposalGenerator.*biases'],
invert=True)
self.assertItemsEqual(out_variables, [variables[1], variables[3]])
class MultiplyGradientsMatchingRegexTest(tf.test.TestCase):
def _create_grads_and_vars(self):
return [(tf.constant(1.0),
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')),
(tf.constant(2.0),
tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')),
(tf.constant(3.0),
tf.Variable(3.0, name='StackProposalGenerator/weights')),
(tf.constant(4.0),
tf.Variable(4.0, name='StackProposalGenerator/biases'))]
def test_multiply_all_feature_extractor_variables(self):
grads_and_vars = self._create_grads_and_vars()
regex_list = ['FeatureExtractor/.*']
multiplier = 0.0
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
grads_and_vars, regex_list, multiplier)
exp_output = [(0.0, 1.0), (0.0, 2.0), (3.0, 3.0), (4.0, 4.0)]
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
output = sess.run(grads_and_vars)
self.assertItemsEqual(output, exp_output)
def test_multiply_all_bias_variables(self):
grads_and_vars = self._create_grads_and_vars()
regex_list = ['.*/biases']
multiplier = 0.0
grads_and_vars = variables_helper.multiply_gradients_matching_regex(
grads_and_vars, regex_list, multiplier)
exp_output = [(1.0, 1.0), (0.0, 2.0), (3.0, 3.0), (0.0, 4.0)]
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
output = sess.run(grads_and_vars)
self.assertItemsEqual(output, exp_output)
class FreezeGradientsMatchingRegexTest(tf.test.TestCase):
def _create_grads_and_vars(self):
return [(tf.constant(1.0),
tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')),
(tf.constant(2.0),
tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')),
(tf.constant(3.0),
tf.Variable(3.0, name='StackProposalGenerator/weights')),
(tf.constant(4.0),
tf.Variable(4.0, name='StackProposalGenerator/biases'))]
def test_freeze_all_feature_extractor_variables(self):
grads_and_vars = self._create_grads_and_vars()
regex_list = ['FeatureExtractor/.*']
grads_and_vars = variables_helper.freeze_gradients_matching_regex(
grads_and_vars, regex_list)
exp_output = [(3.0, 3.0), (4.0, 4.0)]
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
output = sess.run(grads_and_vars)
self.assertItemsEqual(output, exp_output)
class GetVariablesAvailableInCheckpointTest(tf.test.TestCase):
def test_return_all_variables_from_checkpoint(self):
with tf.Graph().as_default():
variables = [
tf.Variable(1.0, name='weights'),
tf.Variable(1.0, name='biases')
]
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
out_variables = variables_helper.get_variables_available_in_checkpoint(
variables, checkpoint_path)
self.assertItemsEqual(out_variables, variables)
def test_return_all_variables_from_checkpoint_with_partition(self):
with tf.Graph().as_default():
partitioner = tf.fixed_size_partitioner(2)
variables = [
tf.get_variable(
name='weights', shape=(2, 2), partitioner=partitioner),
tf.Variable([1.0, 2.0], name='biases')
]
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
out_variables = variables_helper.get_variables_available_in_checkpoint(
variables, checkpoint_path)
self.assertItemsEqual(out_variables, variables)
def test_return_variables_available_in_checkpoint(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
with tf.Graph().as_default():
weight_variable = tf.Variable(1.0, name='weights')
global_step = tf.train.get_or_create_global_step()
graph1_variables = [
weight_variable,
global_step
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
with tf.Graph().as_default():
graph2_variables = graph1_variables + [tf.Variable(1.0, name='biases')]
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables, checkpoint_path, include_global_step=False)
self.assertItemsEqual(out_variables, [weight_variable])
def test_return_variables_available_an_checkpoint_with_dict_inputs(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
with tf.Graph().as_default():
graph1_variables = [
tf.Variable(1.0, name='ckpt_weights'),
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
with tf.Graph().as_default():
graph2_variables_dict = {
'ckpt_weights': tf.Variable(1.0, name='weights'),
'ckpt_biases': tf.Variable(1.0, name='biases')
}
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables_dict, checkpoint_path)
self.assertTrue(isinstance(out_variables, dict))
self.assertItemsEqual(out_variables.keys(), ['ckpt_weights'])
self.assertTrue(out_variables['ckpt_weights'].op.name == 'weights')
def test_return_variables_with_correct_sizes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
with tf.Graph().as_default():
bias_variable = tf.Variable(3.0, name='biases')
global_step = tf.train.get_or_create_global_step()
graph1_variables = [
tf.Variable([[1.0, 2.0], [3.0, 4.0]], name='weights'),
bias_variable,
global_step
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
with tf.Graph().as_default():
graph2_variables = [
tf.Variable([1.0, 2.0], name='weights'), # New variable shape.
bias_variable,
global_step
]
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables, checkpoint_path, include_global_step=True)
self.assertItemsEqual(out_variables, [bias_variable, global_step])
if __name__ == '__main__':
tf.test.main()