|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.utils.object_detection_evaluation.""" |
|
|
|
from absl.testing import parameterized |
|
import numpy as np |
|
import tensorflow as tf |
|
from object_detection import eval_util |
|
from object_detection.core import standard_fields |
|
from object_detection.utils import object_detection_evaluation |
|
|
|
|
|
class OpenImagesV2EvaluationTest(tf.test.TestCase): |
|
|
|
def test_returns_correct_metric_values(self): |
|
categories = [{ |
|
'id': 1, |
|
'name': 'cat' |
|
}, { |
|
'id': 2, |
|
'name': 'dog' |
|
}, { |
|
'id': 3, |
|
'name': 'elephant' |
|
}] |
|
|
|
oiv2_evaluator = object_detection_evaluation.OpenImagesDetectionEvaluator( |
|
categories) |
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array( |
|
[[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
oiv2_evaluator.add_single_ground_truth_image_info(image_key1, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1, |
|
standard_fields.InputDataFields.groundtruth_group_of: |
|
np.array([], dtype=bool) |
|
}) |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array( |
|
[[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) |
|
groundtruth_is_group_of_list2 = np.array([False, True, False], dtype=bool) |
|
oiv2_evaluator.add_single_ground_truth_image_info(image_key2, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes2, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels2, |
|
standard_fields.InputDataFields.groundtruth_group_of: |
|
groundtruth_is_group_of_list2 |
|
}) |
|
image_key3 = 'img3' |
|
groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels3 = np.array([2], dtype=int) |
|
oiv2_evaluator.add_single_ground_truth_image_info(image_key3, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes3, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels3 |
|
}) |
|
|
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], |
|
dtype=float) |
|
detected_class_labels = np.array([1, 1, 3], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) |
|
oiv2_evaluator.add_single_detected_image_info(image_key, { |
|
standard_fields.DetectionResultFields.detection_boxes: |
|
detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels |
|
}) |
|
metrics = oiv2_evaluator.evaluate() |
|
self.assertAlmostEqual( |
|
metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/dog'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666) |
|
self.assertAlmostEqual(metrics['OpenImagesV2_Precision/mAP@0.5IOU'], |
|
0.05555555) |
|
oiv2_evaluator.clear() |
|
self.assertFalse(oiv2_evaluator._image_ids) |
|
|
|
|
|
class OpenImagesDetectionChallengeEvaluatorTest(tf.test.TestCase): |
|
|
|
def test_returns_correct_metric_values(self): |
|
categories = [{ |
|
'id': 1, |
|
'name': 'cat' |
|
}, { |
|
'id': 2, |
|
'name': 'dog' |
|
}, { |
|
'id': 3, |
|
'name': 'elephant' |
|
}] |
|
oivchallenge_evaluator = ( |
|
object_detection_evaluation.OpenImagesDetectionChallengeEvaluator( |
|
categories, group_of_weight=0.5)) |
|
|
|
image_key = 'img1' |
|
groundtruth_boxes = np.array( |
|
[[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) |
|
groundtruth_class_labels = np.array([1, 3, 1], dtype=int) |
|
groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool) |
|
groundtruth_verified_labels = np.array([1, 2, 3], dtype=int) |
|
oivchallenge_evaluator.add_single_ground_truth_image_info( |
|
image_key, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels, |
|
standard_fields.InputDataFields.groundtruth_group_of: |
|
groundtruth_is_group_of_list, |
|
standard_fields.InputDataFields.groundtruth_image_classes: |
|
groundtruth_verified_labels, |
|
}) |
|
image_key = 'img2' |
|
groundtruth_boxes = np.array( |
|
[[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels = np.array([1, 1, 3], dtype=int) |
|
groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool) |
|
oivchallenge_evaluator.add_single_ground_truth_image_info( |
|
image_key, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels, |
|
standard_fields.InputDataFields.groundtruth_group_of: |
|
groundtruth_is_group_of_list |
|
}) |
|
image_key = 'img3' |
|
groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels = np.array([2], dtype=int) |
|
oivchallenge_evaluator.add_single_ground_truth_image_info( |
|
image_key, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels |
|
}) |
|
image_key = 'img1' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120]], dtype=float) |
|
detected_class_labels = np.array([2, 2], dtype=int) |
|
detected_scores = np.array([0.7, 0.8], dtype=float) |
|
oivchallenge_evaluator.add_single_detected_image_info( |
|
image_key, { |
|
standard_fields.DetectionResultFields.detection_boxes: |
|
detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels |
|
}) |
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220], |
|
[10, 10, 11, 11]], |
|
dtype=float) |
|
detected_class_labels = np.array([1, 1, 2, 3], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.5, 0.9], dtype=float) |
|
oivchallenge_evaluator.add_single_detected_image_info( |
|
image_key, { |
|
standard_fields.DetectionResultFields.detection_boxes: |
|
detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels |
|
}) |
|
image_key = 'img3' |
|
detected_boxes = np.array([[0, 0, 1, 1]], dtype=float) |
|
detected_class_labels = np.array([2], dtype=int) |
|
detected_scores = np.array([0.5], dtype=float) |
|
oivchallenge_evaluator.add_single_detected_image_info( |
|
image_key, { |
|
standard_fields.DetectionResultFields.detection_boxes: |
|
detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels |
|
}) |
|
metrics = oivchallenge_evaluator.evaluate() |
|
|
|
self.assertAlmostEqual( |
|
metrics['OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/dog'], |
|
0.3333333333) |
|
self.assertAlmostEqual( |
|
metrics[ |
|
'OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/elephant'], |
|
0.333333333333) |
|
self.assertAlmostEqual( |
|
metrics['OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/cat'], |
|
0.142857142857) |
|
self.assertAlmostEqual( |
|
metrics['OpenImagesChallenge2018_Precision/mAP@0.5IOU'], 0.269841269) |
|
|
|
oivchallenge_evaluator.clear() |
|
self.assertFalse(oivchallenge_evaluator._image_ids) |
|
|
|
|
|
class PascalEvaluationTest(tf.test.TestCase): |
|
|
|
def test_returns_correct_metric_values_on_boxes(self): |
|
categories = [{'id': 1, 'name': 'cat'}, |
|
{'id': 2, 'name': 'dog'}, |
|
{'id': 3, 'name': 'elephant'}] |
|
|
|
pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( |
|
categories) |
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1, |
|
standard_fields.InputDataFields.groundtruth_difficult: |
|
np.array([], dtype=bool)}) |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) |
|
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key2, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels2, |
|
standard_fields.InputDataFields.groundtruth_difficult: |
|
groundtruth_is_difficult_list2}) |
|
image_key3 = 'img3' |
|
groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels3 = np.array([2], dtype=int) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key3, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels3}) |
|
|
|
|
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], |
|
dtype=float) |
|
detected_class_labels = np.array([1, 1, 3], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) |
|
pascal_evaluator.add_single_detected_image_info( |
|
image_key, |
|
{standard_fields.DetectionResultFields.detection_boxes: detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels}) |
|
|
|
metrics = pascal_evaluator.evaluate() |
|
self.assertAlmostEqual( |
|
metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/dog'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666) |
|
self.assertAlmostEqual(metrics['PascalBoxes_Precision/mAP@0.5IOU'], |
|
0.05555555) |
|
pascal_evaluator.clear() |
|
self.assertFalse(pascal_evaluator._image_ids) |
|
|
|
def test_returns_correct_metric_values_on_masks(self): |
|
categories = [{'id': 1, 'name': 'cat'}, |
|
{'id': 2, 'name': 'dog'}, |
|
{'id': 3, 'name': 'elephant'}] |
|
|
|
pascal_evaluator = ( |
|
object_detection_evaluation.PascalInstanceSegmentationEvaluator( |
|
categories)) |
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
groundtruth_masks_1_0 = np.array([[1, 0, 0, 0], |
|
[1, 0, 0, 0], |
|
[1, 0, 0, 0]], dtype=np.uint8) |
|
groundtruth_masks_1_1 = np.array([[0, 0, 1, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 1, 0]], dtype=np.uint8) |
|
groundtruth_masks_1_2 = np.array([[0, 1, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 1, 0, 0]], dtype=np.uint8) |
|
groundtruth_masks1 = np.stack( |
|
[groundtruth_masks_1_0, groundtruth_masks_1_1, groundtruth_masks_1_2], |
|
axis=0) |
|
|
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key1, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_instance_masks: |
|
groundtruth_masks1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1, |
|
standard_fields.InputDataFields.groundtruth_difficult: |
|
np.array([], dtype=bool) |
|
}) |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) |
|
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) |
|
groundtruth_masks_2_0 = np.array([[1, 1, 1, 1], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]], dtype=np.uint8) |
|
groundtruth_masks_2_1 = np.array([[0, 0, 0, 0], |
|
[1, 1, 1, 1], |
|
[0, 0, 0, 0]], dtype=np.uint8) |
|
groundtruth_masks_2_2 = np.array([[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[1, 1, 1, 1]], dtype=np.uint8) |
|
groundtruth_masks2 = np.stack( |
|
[groundtruth_masks_2_0, groundtruth_masks_2_1, groundtruth_masks_2_2], |
|
axis=0) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key2, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes2, |
|
standard_fields.InputDataFields.groundtruth_instance_masks: |
|
groundtruth_masks2, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels2, |
|
standard_fields.InputDataFields.groundtruth_difficult: |
|
groundtruth_is_difficult_list2 |
|
}) |
|
image_key3 = 'img3' |
|
groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels3 = np.array([2], dtype=int) |
|
groundtruth_masks_3_0 = np.array([[1, 1, 1, 1], |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1]], dtype=np.uint8) |
|
groundtruth_masks3 = np.stack([groundtruth_masks_3_0], axis=0) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key3, { |
|
standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes3, |
|
standard_fields.InputDataFields.groundtruth_instance_masks: |
|
groundtruth_masks3, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels3 |
|
}) |
|
|
|
|
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], |
|
dtype=float) |
|
detected_class_labels = np.array([1, 1, 3], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) |
|
detected_masks_0 = np.array([[1, 1, 1, 1], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 0]], dtype=np.uint8) |
|
detected_masks_1 = np.array([[1, 0, 0, 0], |
|
[1, 1, 0, 0], |
|
[0, 0, 0, 0]], dtype=np.uint8) |
|
detected_masks_2 = np.array([[0, 1, 0, 0], |
|
[0, 1, 1, 0], |
|
[0, 1, 0, 0]], dtype=np.uint8) |
|
detected_masks = np.stack( |
|
[detected_masks_0, detected_masks_1, detected_masks_2], axis=0) |
|
|
|
pascal_evaluator.add_single_detected_image_info( |
|
image_key, { |
|
standard_fields.DetectionResultFields.detection_boxes: |
|
detected_boxes, |
|
standard_fields.DetectionResultFields.detection_masks: |
|
detected_masks, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels |
|
}) |
|
|
|
metrics = pascal_evaluator.evaluate() |
|
|
|
self.assertAlmostEqual( |
|
metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/dog'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666) |
|
self.assertAlmostEqual(metrics['PascalMasks_Precision/mAP@0.5IOU'], |
|
0.05555555) |
|
pascal_evaluator.clear() |
|
self.assertFalse(pascal_evaluator._image_ids) |
|
|
|
def test_value_error_on_duplicate_images(self): |
|
categories = [{'id': 1, 'name': 'cat'}, |
|
{'id': 2, 'name': 'dog'}, |
|
{'id': 3, 'name': 'elephant'}] |
|
|
|
pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( |
|
categories) |
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1}) |
|
with self.assertRaises(ValueError): |
|
pascal_evaluator.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1}) |
|
|
|
|
|
class WeightedPascalEvaluationTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
self.categories = [{'id': 1, 'name': 'cat'}, |
|
{'id': 2, 'name': 'dog'}, |
|
{'id': 3, 'name': 'elephant'}] |
|
|
|
def create_and_add_common_ground_truth(self): |
|
|
|
self.wp_eval = ( |
|
object_detection_evaluation.WeightedPascalDetectionEvaluator( |
|
self.categories)) |
|
|
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1}) |
|
|
|
image_key3 = 'img3' |
|
groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels3 = np.array([2], dtype=int) |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key3, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels3}) |
|
|
|
def add_common_detected(self): |
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], |
|
dtype=float) |
|
detected_class_labels = np.array([1, 1, 3], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) |
|
self.wp_eval.add_single_detected_image_info( |
|
image_key, |
|
{standard_fields.DetectionResultFields.detection_boxes: detected_boxes, |
|
standard_fields.DetectionResultFields.detection_scores: |
|
detected_scores, |
|
standard_fields.DetectionResultFields.detection_classes: |
|
detected_class_labels}) |
|
|
|
def test_returns_correct_metric_values(self): |
|
self.create_and_add_common_ground_truth() |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key2, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels2 |
|
}) |
|
self.add_common_detected() |
|
|
|
metrics = self.wp_eval.evaluate() |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/dog'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/elephant'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/cat'], 0.5 / 4) |
|
self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix + |
|
'Precision/mAP@0.5IOU'], |
|
1. / (4 + 1 + 2) / 3) |
|
self.wp_eval.clear() |
|
self.assertFalse(self.wp_eval._image_ids) |
|
|
|
def test_returns_correct_metric_values_with_difficult_list(self): |
|
self.create_and_add_common_ground_truth() |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) |
|
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key2, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels2, |
|
standard_fields.InputDataFields.groundtruth_difficult: |
|
groundtruth_is_difficult_list2 |
|
}) |
|
self.add_common_detected() |
|
|
|
metrics = self.wp_eval.evaluate() |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/dog'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/elephant'], 0.0) |
|
self.assertAlmostEqual( |
|
metrics[self.wp_eval._metric_prefix + |
|
'PerformanceByCategory/AP@0.5IOU/cat'], 0.5 / 3) |
|
self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix + |
|
'Precision/mAP@0.5IOU'], |
|
1. / (3 + 1 + 2) / 3) |
|
self.wp_eval.clear() |
|
self.assertFalse(self.wp_eval._image_ids) |
|
|
|
def test_value_error_on_duplicate_images(self): |
|
|
|
self.wp_eval = ( |
|
object_detection_evaluation.WeightedPascalDetectionEvaluator( |
|
self.categories)) |
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1}) |
|
with self.assertRaises(ValueError): |
|
self.wp_eval.add_single_ground_truth_image_info( |
|
image_key1, |
|
{standard_fields.InputDataFields.groundtruth_boxes: |
|
groundtruth_boxes1, |
|
standard_fields.InputDataFields.groundtruth_classes: |
|
groundtruth_class_labels1}) |
|
|
|
|
|
class ObjectDetectionEvaluationTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
num_groundtruth_classes = 3 |
|
self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( |
|
num_groundtruth_classes) |
|
|
|
image_key1 = 'img1' |
|
groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], |
|
dtype=float) |
|
groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) |
|
self.od_eval.add_single_ground_truth_image_info( |
|
image_key1, groundtruth_boxes1, groundtruth_class_labels1) |
|
image_key2 = 'img2' |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) |
|
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) |
|
groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) |
|
self.od_eval.add_single_ground_truth_image_info( |
|
image_key2, groundtruth_boxes2, groundtruth_class_labels2, |
|
groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) |
|
|
|
image_key3 = 'img3' |
|
groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) |
|
groundtruth_class_labels3 = np.array([1], dtype=int) |
|
self.od_eval.add_single_ground_truth_image_info( |
|
image_key3, groundtruth_boxes3, groundtruth_class_labels3) |
|
|
|
image_key = 'img2' |
|
detected_boxes = np.array( |
|
[[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], |
|
dtype=float) |
|
detected_class_labels = np.array([0, 0, 2], dtype=int) |
|
detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) |
|
self.od_eval.add_single_detected_image_info( |
|
image_key, detected_boxes, detected_scores, detected_class_labels) |
|
|
|
def test_value_error_on_zero_classes(self): |
|
with self.assertRaises(ValueError): |
|
object_detection_evaluation.ObjectDetectionEvaluation( |
|
num_groundtruth_classes=0) |
|
|
|
def test_add_single_ground_truth_image_info(self): |
|
expected_num_gt_instances_per_class = np.array([3, 1, 1], dtype=int) |
|
expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) |
|
self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, |
|
self.od_eval.num_gt_instances_per_class)) |
|
self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, |
|
self.od_eval.num_gt_imgs_per_class)) |
|
groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], |
|
[10, 10, 12, 12]], dtype=float) |
|
self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes['img2'], |
|
groundtruth_boxes2)) |
|
groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) |
|
self.assertTrue(np.allclose( |
|
self.od_eval.groundtruth_is_difficult_list['img2'], |
|
groundtruth_is_difficult_list2)) |
|
groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) |
|
self.assertTrue( |
|
np.allclose(self.od_eval.groundtruth_is_group_of_list['img2'], |
|
groundtruth_is_group_of_list2)) |
|
|
|
groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) |
|
self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ |
|
'img1'], groundtruth_class_labels1)) |
|
|
|
def test_add_single_detected_image_info(self): |
|
expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], |
|
[np.array([0.9], dtype=float)]] |
|
expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], |
|
[np.array([0], dtype=bool)]] |
|
expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], |
|
dtype=int) |
|
for i in range(self.od_eval.num_class): |
|
for j in range(len(expected_scores_per_class[i])): |
|
self.assertTrue(np.allclose(expected_scores_per_class[i][j], |
|
self.od_eval.scores_per_class[i][j])) |
|
self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ |
|
j], self.od_eval.tp_fp_labels_per_class[i][j])) |
|
self.assertTrue(np.array_equal( |
|
expected_num_images_correctly_detected_per_class, |
|
self.od_eval.num_images_correctly_detected_per_class)) |
|
|
|
def test_evaluate(self): |
|
(average_precision_per_class, mean_ap, precisions_per_class, |
|
recalls_per_class, corloc_per_class, |
|
mean_corloc) = self.od_eval.evaluate() |
|
expected_precisions_per_class = [np.array([0, 0.5], dtype=float), |
|
np.array([], dtype=float), |
|
np.array([0], dtype=float)] |
|
expected_recalls_per_class = [ |
|
np.array([0, 1. / 3.], dtype=float), np.array([], dtype=float), |
|
np.array([0], dtype=float) |
|
] |
|
expected_average_precision_per_class = np.array([1. / 6., 0, 0], |
|
dtype=float) |
|
expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float) |
|
expected_mean_ap = 1. / 18 |
|
expected_mean_corloc = 0.0 |
|
for i in range(self.od_eval.num_class): |
|
self.assertTrue(np.allclose(expected_precisions_per_class[i], |
|
precisions_per_class[i])) |
|
self.assertTrue(np.allclose(expected_recalls_per_class[i], |
|
recalls_per_class[i])) |
|
self.assertTrue(np.allclose(expected_average_precision_per_class, |
|
average_precision_per_class)) |
|
self.assertTrue(np.allclose(expected_corloc_per_class, corloc_per_class)) |
|
self.assertAlmostEqual(expected_mean_ap, mean_ap) |
|
self.assertAlmostEqual(expected_mean_corloc, mean_corloc) |
|
|
|
|
|
class ObjectDetectionEvaluatorTest(tf.test.TestCase, parameterized.TestCase): |
|
|
|
def setUp(self): |
|
self.categories = [{ |
|
'id': 1, |
|
'name': 'person' |
|
}, { |
|
'id': 2, |
|
'name': 'dog' |
|
}, { |
|
'id': 3, |
|
'name': 'cat' |
|
}] |
|
self.od_eval = object_detection_evaluation.ObjectDetectionEvaluator( |
|
categories=self.categories) |
|
|
|
def _make_evaluation_dict(self, |
|
resized_groundtruth_masks=False, |
|
batch_size=1, |
|
max_gt_boxes=None, |
|
scale_to_absolute=False): |
|
input_data_fields = standard_fields.InputDataFields |
|
detection_fields = standard_fields.DetectionResultFields |
|
|
|
image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8) |
|
if batch_size == 1: |
|
key = tf.constant('image1') |
|
else: |
|
key = tf.constant([str(i) for i in range(batch_size)]) |
|
detection_boxes = tf.concat([ |
|
tf.tile( |
|
tf.constant([[[0., 0., 1., 1.]]]), multiples=[batch_size - 1, 1, 1 |
|
]), |
|
tf.constant([[[0., 0., 0.5, 0.5]]]) |
|
], |
|
axis=0) |
|
detection_scores = tf.concat([ |
|
tf.tile(tf.constant([[0.5]]), multiples=[batch_size - 1, 1]), |
|
tf.constant([[0.8]]) |
|
], |
|
axis=0) |
|
detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1]) |
|
detection_masks = tf.tile( |
|
tf.ones(shape=[1, 2, 20, 20], dtype=tf.float32), |
|
multiples=[batch_size, 1, 1, 1]) |
|
groundtruth_boxes = tf.constant([[0., 0., 1., 1.]]) |
|
groundtruth_classes = tf.constant([1]) |
|
groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8) |
|
num_detections = tf.ones([batch_size]) |
|
if resized_groundtruth_masks: |
|
groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8) |
|
|
|
if batch_size > 1: |
|
groundtruth_boxes = tf.tile( |
|
tf.expand_dims(groundtruth_boxes, 0), multiples=[batch_size, 1, 1]) |
|
groundtruth_classes = tf.tile( |
|
tf.expand_dims(groundtruth_classes, 0), multiples=[batch_size, 1]) |
|
groundtruth_instance_masks = tf.tile( |
|
tf.expand_dims(groundtruth_instance_masks, 0), |
|
multiples=[batch_size, 1, 1, 1]) |
|
|
|
detections = { |
|
detection_fields.detection_boxes: detection_boxes, |
|
detection_fields.detection_scores: detection_scores, |
|
detection_fields.detection_classes: detection_classes, |
|
detection_fields.detection_masks: detection_masks, |
|
detection_fields.num_detections: num_detections |
|
} |
|
groundtruth = { |
|
input_data_fields.groundtruth_boxes: |
|
groundtruth_boxes, |
|
input_data_fields.groundtruth_classes: |
|
groundtruth_classes, |
|
input_data_fields.groundtruth_instance_masks: |
|
groundtruth_instance_masks, |
|
} |
|
if batch_size > 1: |
|
return eval_util.result_dict_for_batched_example( |
|
image, |
|
key, |
|
detections, |
|
groundtruth, |
|
scale_to_absolute=scale_to_absolute, |
|
max_gt_boxes=max_gt_boxes) |
|
else: |
|
return eval_util.result_dict_for_single_example( |
|
image, |
|
key, |
|
detections, |
|
groundtruth, |
|
scale_to_absolute=scale_to_absolute) |
|
|
|
@parameterized.parameters({ |
|
'batch_size': 1, |
|
'expected_map': 0, |
|
'max_gt_boxes': None, |
|
'scale_to_absolute': True |
|
}, { |
|
'batch_size': 8, |
|
'expected_map': 0.765625, |
|
'max_gt_boxes': [1], |
|
'scale_to_absolute': True |
|
}, { |
|
'batch_size': 1, |
|
'expected_map': 0, |
|
'max_gt_boxes': None, |
|
'scale_to_absolute': False |
|
}, { |
|
'batch_size': 8, |
|
'expected_map': 0.765625, |
|
'max_gt_boxes': [1], |
|
'scale_to_absolute': False |
|
}) |
|
def test_get_estimator_eval_metric_ops(self, |
|
batch_size=1, |
|
expected_map=1, |
|
max_gt_boxes=None, |
|
scale_to_absolute=False): |
|
|
|
eval_dict = self._make_evaluation_dict( |
|
batch_size=batch_size, |
|
max_gt_boxes=max_gt_boxes, |
|
scale_to_absolute=scale_to_absolute) |
|
tf.logging.info('eval_dict: {}'.format(eval_dict)) |
|
metric_ops = self.od_eval.get_estimator_eval_metric_ops(eval_dict) |
|
_, update_op = metric_ops['Precision/mAP@0.5IOU'] |
|
|
|
with self.test_session() as sess: |
|
metrics = {} |
|
for key, (value_op, _) in metric_ops.iteritems(): |
|
metrics[key] = value_op |
|
sess.run(update_op) |
|
metrics = sess.run(metrics) |
|
self.assertAlmostEqual(expected_map, metrics['Precision/mAP@0.5IOU']) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|