|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.utils.np_box_list_test.""" |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from object_detection.utils import np_box_list |
|
|
|
|
|
class BoxListTest(tf.test.TestCase): |
|
|
|
def test_invalid_box_data(self): |
|
with self.assertRaises(ValueError): |
|
np_box_list.BoxList([0, 0, 1, 1]) |
|
|
|
with self.assertRaises(ValueError): |
|
np_box_list.BoxList(np.array([[0, 0, 1, 1]], dtype=int)) |
|
|
|
with self.assertRaises(ValueError): |
|
np_box_list.BoxList(np.array([0, 1, 1, 3, 4], dtype=float)) |
|
|
|
with self.assertRaises(ValueError): |
|
np_box_list.BoxList(np.array([[0, 1, 1, 3], [3, 1, 1, 5]], dtype=float)) |
|
|
|
def test_has_field_with_existed_field(self): |
|
boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], |
|
[0.0, 0.0, 20.0, 20.0]], |
|
dtype=float) |
|
boxlist = np_box_list.BoxList(boxes) |
|
self.assertTrue(boxlist.has_field('boxes')) |
|
|
|
def test_has_field_with_nonexisted_field(self): |
|
boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], |
|
[0.0, 0.0, 20.0, 20.0]], |
|
dtype=float) |
|
boxlist = np_box_list.BoxList(boxes) |
|
self.assertFalse(boxlist.has_field('scores')) |
|
|
|
def test_get_field_with_existed_field(self): |
|
boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], |
|
[0.0, 0.0, 20.0, 20.0]], |
|
dtype=float) |
|
boxlist = np_box_list.BoxList(boxes) |
|
self.assertTrue(np.allclose(boxlist.get_field('boxes'), boxes)) |
|
|
|
def test_get_field_with_nonexited_field(self): |
|
boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], |
|
[0.0, 0.0, 20.0, 20.0]], |
|
dtype=float) |
|
boxlist = np_box_list.BoxList(boxes) |
|
with self.assertRaises(ValueError): |
|
boxlist.get_field('scores') |
|
|
|
|
|
class AddExtraFieldTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], |
|
[0.0, 0.0, 20.0, 20.0]], |
|
dtype=float) |
|
self.boxlist = np_box_list.BoxList(boxes) |
|
|
|
def test_add_already_existed_field(self): |
|
with self.assertRaises(ValueError): |
|
self.boxlist.add_field('boxes', np.array([[0, 0, 0, 1, 0]], dtype=float)) |
|
|
|
def test_add_invalid_field_data(self): |
|
with self.assertRaises(ValueError): |
|
self.boxlist.add_field('scores', np.array([0.5, 0.7], dtype=float)) |
|
with self.assertRaises(ValueError): |
|
self.boxlist.add_field('scores', |
|
np.array([0.5, 0.7, 0.9, 0.1], dtype=float)) |
|
|
|
def test_add_single_dimensional_field_data(self): |
|
boxlist = self.boxlist |
|
scores = np.array([0.5, 0.7, 0.9], dtype=float) |
|
boxlist.add_field('scores', scores) |
|
self.assertTrue(np.allclose(scores, self.boxlist.get_field('scores'))) |
|
|
|
def test_add_multi_dimensional_field_data(self): |
|
boxlist = self.boxlist |
|
labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], |
|
dtype=int) |
|
boxlist.add_field('labels', labels) |
|
self.assertTrue(np.allclose(labels, self.boxlist.get_field('labels'))) |
|
|
|
def test_get_extra_fields(self): |
|
boxlist = self.boxlist |
|
self.assertItemsEqual(boxlist.get_extra_fields(), []) |
|
|
|
scores = np.array([0.5, 0.7, 0.9], dtype=float) |
|
boxlist.add_field('scores', scores) |
|
self.assertItemsEqual(boxlist.get_extra_fields(), ['scores']) |
|
|
|
labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], |
|
dtype=int) |
|
boxlist.add_field('labels', labels) |
|
self.assertItemsEqual(boxlist.get_extra_fields(), ['scores', 'labels']) |
|
|
|
def test_get_coordinates(self): |
|
y_min, x_min, y_max, x_max = self.boxlist.get_coordinates() |
|
|
|
expected_y_min = np.array([3.0, 14.0, 0.0], dtype=float) |
|
expected_x_min = np.array([4.0, 14.0, 0.0], dtype=float) |
|
expected_y_max = np.array([6.0, 15.0, 20.0], dtype=float) |
|
expected_x_max = np.array([8.0, 15.0, 20.0], dtype=float) |
|
|
|
self.assertTrue(np.allclose(y_min, expected_y_min)) |
|
self.assertTrue(np.allclose(x_min, expected_x_min)) |
|
self.assertTrue(np.allclose(y_max, expected_y_max)) |
|
self.assertTrue(np.allclose(x_max, expected_x_max)) |
|
|
|
def test_num_boxes(self): |
|
boxes = np.array([[0., 0., 100., 100.], [10., 30., 50., 70.]], dtype=float) |
|
boxlist = np_box_list.BoxList(boxes) |
|
expected_num_boxes = 2 |
|
self.assertEquals(boxlist.num_boxes(), expected_num_boxes) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|