|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for ssd_pnas_feature_extractor.""" |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from object_detection.models import ssd_feature_extractor_test |
|
from object_detection.models import ssd_pnasnet_feature_extractor |
|
|
|
slim = tf.contrib.slim |
|
|
|
|
|
class SsdPnasNetFeatureExtractorTest( |
|
ssd_feature_extractor_test.SsdFeatureExtractorTestBase): |
|
|
|
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, |
|
is_training=True, use_explicit_padding=False): |
|
"""Constructs a new feature extractor. |
|
|
|
Args: |
|
depth_multiplier: float depth multiplier for feature extractor |
|
pad_to_multiple: the nearest multiple to zero pad the input height and |
|
width dimensions to. |
|
is_training: whether the network is in training mode. |
|
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad |
|
inputs so that the output dimensions are the same as if 'SAME' padding |
|
were used. |
|
Returns: |
|
an ssd_meta_arch.SSDFeatureExtractor object. |
|
""" |
|
min_depth = 32 |
|
return ssd_pnasnet_feature_extractor.SSDPNASNetFeatureExtractor( |
|
is_training, depth_multiplier, min_depth, pad_to_multiple, |
|
self.conv_hyperparams_fn, |
|
use_explicit_padding=use_explicit_padding) |
|
|
|
def test_extract_features_returns_correct_shapes_128(self): |
|
image_height = 128 |
|
image_width = 128 |
|
depth_multiplier = 1.0 |
|
pad_to_multiple = 1 |
|
expected_feature_map_shape = [(2, 8, 8, 2160), (2, 4, 4, 4320), |
|
(2, 2, 2, 512), (2, 1, 1, 256), |
|
(2, 1, 1, 256), (2, 1, 1, 128)] |
|
self.check_extract_features_returns_correct_shape( |
|
2, image_height, image_width, depth_multiplier, pad_to_multiple, |
|
expected_feature_map_shape) |
|
|
|
def test_extract_features_returns_correct_shapes_299(self): |
|
image_height = 299 |
|
image_width = 299 |
|
depth_multiplier = 1.0 |
|
pad_to_multiple = 1 |
|
expected_feature_map_shape = [(2, 19, 19, 2160), (2, 10, 10, 4320), |
|
(2, 5, 5, 512), (2, 3, 3, 256), |
|
(2, 2, 2, 256), (2, 1, 1, 128)] |
|
self.check_extract_features_returns_correct_shape( |
|
2, image_height, image_width, depth_multiplier, pad_to_multiple, |
|
expected_feature_map_shape) |
|
|
|
def test_preprocess_returns_correct_value_range(self): |
|
image_height = 128 |
|
image_width = 128 |
|
depth_multiplier = 1 |
|
pad_to_multiple = 1 |
|
test_image = np.random.rand(2, image_height, image_width, 3) |
|
feature_extractor = self._create_feature_extractor(depth_multiplier, |
|
pad_to_multiple) |
|
preprocessed_image = feature_extractor.preprocess(test_image) |
|
self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|