|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SSDFeatureExtractor for InceptionV2 features.""" |
|
import tensorflow as tf |
|
|
|
from object_detection.meta_architectures import ssd_meta_arch |
|
from object_detection.models import feature_map_generators |
|
from object_detection.utils import ops |
|
from object_detection.utils import shape_utils |
|
from nets import inception_v2 |
|
|
|
slim = tf.contrib.slim |
|
|
|
|
|
class SSDInceptionV2FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): |
|
"""SSD Feature Extractor using InceptionV2 features.""" |
|
|
|
def __init__(self, |
|
is_training, |
|
depth_multiplier, |
|
min_depth, |
|
pad_to_multiple, |
|
conv_hyperparams_fn, |
|
reuse_weights=None, |
|
use_explicit_padding=False, |
|
use_depthwise=False, |
|
override_base_feature_extractor_hyperparams=False): |
|
"""InceptionV2 Feature Extractor for SSD Models. |
|
|
|
Args: |
|
is_training: whether the network is in training mode. |
|
depth_multiplier: float depth multiplier for feature extractor. |
|
min_depth: minimum feature extractor depth. |
|
pad_to_multiple: the nearest multiple to zero pad the input height and |
|
width dimensions to. |
|
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d |
|
and separable_conv2d ops in the layers that are added on top of the |
|
base feature extractor. |
|
reuse_weights: Whether to reuse variables. Default is None. |
|
use_explicit_padding: Whether to use explicit padding when extracting |
|
features. Default is False. |
|
use_depthwise: Whether to use depthwise convolutions. Default is False. |
|
override_base_feature_extractor_hyperparams: Whether to override |
|
hyperparameters of the base feature extractor with the one from |
|
`conv_hyperparams_fn`. |
|
|
|
Raises: |
|
ValueError: If `override_base_feature_extractor_hyperparams` is False. |
|
""" |
|
super(SSDInceptionV2FeatureExtractor, self).__init__( |
|
is_training=is_training, |
|
depth_multiplier=depth_multiplier, |
|
min_depth=min_depth, |
|
pad_to_multiple=pad_to_multiple, |
|
conv_hyperparams_fn=conv_hyperparams_fn, |
|
reuse_weights=reuse_weights, |
|
use_explicit_padding=use_explicit_padding, |
|
use_depthwise=use_depthwise, |
|
override_base_feature_extractor_hyperparams= |
|
override_base_feature_extractor_hyperparams) |
|
if not self._override_base_feature_extractor_hyperparams: |
|
raise ValueError('SSD Inception V2 feature extractor always uses' |
|
'scope returned by `conv_hyperparams_fn` for both the ' |
|
'base feature extractor and the additional layers ' |
|
'added since there is no arg_scope defined for the base ' |
|
'feature extractor.') |
|
|
|
def preprocess(self, resized_inputs): |
|
"""SSD preprocessing. |
|
|
|
Maps pixel values to the range [-1, 1]. |
|
|
|
Args: |
|
resized_inputs: a [batch, height, width, channels] float tensor |
|
representing a batch of images. |
|
|
|
Returns: |
|
preprocessed_inputs: a [batch, height, width, channels] float tensor |
|
representing a batch of images. |
|
""" |
|
return (2.0 / 255.0) * resized_inputs - 1.0 |
|
|
|
def extract_features(self, preprocessed_inputs): |
|
"""Extract features from preprocessed inputs. |
|
|
|
Args: |
|
preprocessed_inputs: a [batch, height, width, channels] float tensor |
|
representing a batch of images. |
|
|
|
Returns: |
|
feature_maps: a list of tensors where the ith tensor has shape |
|
[batch, height_i, width_i, depth_i] |
|
""" |
|
preprocessed_inputs = shape_utils.check_min_image_dim( |
|
33, preprocessed_inputs) |
|
|
|
feature_map_layout = { |
|
'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''], |
|
'layer_depth': [-1, -1, 512, 256, 256, 128], |
|
'use_explicit_padding': self._use_explicit_padding, |
|
'use_depthwise': self._use_depthwise, |
|
} |
|
|
|
with slim.arg_scope(self._conv_hyperparams_fn()): |
|
with tf.variable_scope('InceptionV2', |
|
reuse=self._reuse_weights) as scope: |
|
_, image_features = inception_v2.inception_v2_base( |
|
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), |
|
final_endpoint='Mixed_5c', |
|
min_depth=self._min_depth, |
|
depth_multiplier=self._depth_multiplier, |
|
scope=scope) |
|
feature_maps = feature_map_generators.multi_resolution_feature_maps( |
|
feature_map_layout=feature_map_layout, |
|
depth_multiplier=self._depth_multiplier, |
|
min_depth=self._min_depth, |
|
insert_1x1_conv=True, |
|
image_features=image_features) |
|
|
|
return feature_maps.values() |
|
|