DR-App / object_detection /models /feature_map_generators_test.py
pat229988's picture
Upload 653 files
9a393e2
raw
history blame
27.2 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for feature map generators."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from google.protobuf import text_format
from object_detection.builders import hyperparams_builder
from object_detection.models import feature_map_generators
from object_detection.protos import hyperparams_pb2
INCEPTION_V2_LAYOUT = {
'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 256],
'anchor_strides': [16, 32, 64, -1, -1, -1],
'layer_target_norm': [20.0, -1, -1, -1, -1, -1],
}
INCEPTION_V3_LAYOUT = {
'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
'layer_depth': [-1, -1, -1, 512, 256, 128],
'anchor_strides': [16, 32, 64, -1, -1, -1],
'aspect_ratios': [1.0, 2.0, 1.0/2, 3.0, 1.0/3]
}
EMBEDDED_SSD_MOBILENET_V1_LAYOUT = {
'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256],
'conv_kernel_size': [-1, -1, 3, 3, 2],
}
SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT = {
'from_layer': ['Conv2d_13_pointwise', '', '', ''],
'layer_depth': [-1, 256, 256, 256],
}
@parameterized.parameters(
{'use_keras': False},
{'use_keras': True},
)
class MultiResolutionFeatureMapGeneratorTest(tf.test.TestCase):
def _build_conv_hyperparams(self):
conv_hyperparams = hyperparams_pb2.Hyperparams()
conv_hyperparams_text_proto = """
regularizer {
l2_regularizer {
}
}
initializer {
truncated_normal_initializer {
}
}
"""
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams)
return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams)
def _build_feature_map_generator(self, feature_map_layout, use_keras,
pool_residual=False):
if use_keras:
return feature_map_generators.KerasMultiResolutionFeatureMaps(
feature_map_layout=feature_map_layout,
depth_multiplier=1,
min_depth=32,
insert_1x1_conv=True,
freeze_batchnorm=False,
is_training=True,
conv_hyperparams=self._build_conv_hyperparams(),
name='FeatureMaps'
)
else:
def feature_map_generator(image_features):
return feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=1,
min_depth=32,
insert_1x1_conv=True,
image_features=image_features,
pool_residual=pool_residual)
return feature_map_generator
def test_get_expected_feature_map_shapes_with_inception_v2(self, use_keras):
image_features = {
'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32),
'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32),
'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32)
}
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=INCEPTION_V2_LAYOUT,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Mixed_3c': (4, 28, 28, 256),
'Mixed_4c': (4, 14, 14, 576),
'Mixed_5c': (4, 7, 7, 1024),
'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_get_expected_feature_map_shapes_with_inception_v2_use_depthwise(
self, use_keras):
image_features = {
'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32),
'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32),
'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32)
}
layout_copy = INCEPTION_V2_LAYOUT.copy()
layout_copy['use_depthwise'] = True
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=layout_copy,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Mixed_3c': (4, 28, 28, 256),
'Mixed_4c': (4, 14, 14, 576),
'Mixed_5c': (4, 7, 7, 1024),
'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_get_expected_feature_map_shapes_use_explicit_padding(
self, use_keras):
image_features = {
'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32),
'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32),
'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32)
}
layout_copy = INCEPTION_V2_LAYOUT.copy()
layout_copy['use_explicit_padding'] = True
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=layout_copy,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Mixed_3c': (4, 28, 28, 256),
'Mixed_4c': (4, 14, 14, 576),
'Mixed_5c': (4, 7, 7, 1024),
'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_get_expected_feature_map_shapes_with_inception_v3(self, use_keras):
image_features = {
'Mixed_5d': tf.random_uniform([4, 35, 35, 256], dtype=tf.float32),
'Mixed_6e': tf.random_uniform([4, 17, 17, 576], dtype=tf.float32),
'Mixed_7c': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32)
}
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=INCEPTION_V3_LAYOUT,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Mixed_5d': (4, 35, 35, 256),
'Mixed_6e': (4, 17, 17, 576),
'Mixed_7c': (4, 8, 8, 1024),
'Mixed_7c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512),
'Mixed_7c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256),
'Mixed_7c_2_Conv2d_5_3x3_s2_128': (4, 1, 1, 128)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_get_expected_feature_map_shapes_with_embedded_ssd_mobilenet_v1(
self, use_keras):
image_features = {
'Conv2d_11_pointwise': tf.random_uniform([4, 16, 16, 512],
dtype=tf.float32),
'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024],
dtype=tf.float32),
}
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=EMBEDDED_SSD_MOBILENET_V1_LAYOUT,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Conv2d_11_pointwise': (4, 16, 16, 512),
'Conv2d_13_pointwise': (4, 8, 8, 1024),
'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_512': (4, 4, 4, 512),
'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 2, 2, 256),
'Conv2d_13_pointwise_2_Conv2d_4_2x2_s2_256': (4, 1, 1, 256)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_feature_map_shapes_with_pool_residual_ssd_mobilenet_v1(
self, use_keras):
image_features = {
'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024],
dtype=tf.float32),
}
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT,
use_keras=use_keras,
pool_residual=True
)
feature_maps = feature_map_generator(image_features)
expected_feature_map_shapes = {
'Conv2d_13_pointwise': (4, 8, 8, 1024),
'Conv2d_13_pointwise_2_Conv2d_1_3x3_s2_256': (4, 4, 4, 256),
'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_256': (4, 2, 2, 256),
'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 1, 1, 256)}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = dict(
(key, value.shape) for key, value in out_feature_maps.items())
self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes)
def test_get_expected_variable_names_with_inception_v2(self, use_keras):
image_features = {
'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32),
'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32),
'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32)
}
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=INCEPTION_V2_LAYOUT,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_slim_variables = set([
'Mixed_5c_1_Conv2d_3_1x1_256/weights',
'Mixed_5c_1_Conv2d_3_1x1_256/biases',
'Mixed_5c_2_Conv2d_3_3x3_s2_512/weights',
'Mixed_5c_2_Conv2d_3_3x3_s2_512/biases',
'Mixed_5c_1_Conv2d_4_1x1_128/weights',
'Mixed_5c_1_Conv2d_4_1x1_128/biases',
'Mixed_5c_2_Conv2d_4_3x3_s2_256/weights',
'Mixed_5c_2_Conv2d_4_3x3_s2_256/biases',
'Mixed_5c_1_Conv2d_5_1x1_128/weights',
'Mixed_5c_1_Conv2d_5_1x1_128/biases',
'Mixed_5c_2_Conv2d_5_3x3_s2_256/weights',
'Mixed_5c_2_Conv2d_5_3x3_s2_256/biases',
])
expected_keras_variables = set([
'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/bias',
'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/bias',
'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/bias',
'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/bias',
'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/bias',
'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/bias',
])
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
sess.run(feature_maps)
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
if use_keras:
self.assertSetEqual(expected_keras_variables, actual_variable_set)
else:
self.assertSetEqual(expected_slim_variables, actual_variable_set)
def test_get_expected_variable_names_with_inception_v2_use_depthwise(
self,
use_keras):
image_features = {
'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32),
'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32),
'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32)
}
layout_copy = INCEPTION_V2_LAYOUT.copy()
layout_copy['use_depthwise'] = True
feature_map_generator = self._build_feature_map_generator(
feature_map_layout=layout_copy,
use_keras=use_keras
)
feature_maps = feature_map_generator(image_features)
expected_slim_variables = set([
'Mixed_5c_1_Conv2d_3_1x1_256/weights',
'Mixed_5c_1_Conv2d_3_1x1_256/biases',
'Mixed_5c_2_Conv2d_3_3x3_s2_512_depthwise/depthwise_weights',
'Mixed_5c_2_Conv2d_3_3x3_s2_512_depthwise/biases',
'Mixed_5c_2_Conv2d_3_3x3_s2_512/weights',
'Mixed_5c_2_Conv2d_3_3x3_s2_512/biases',
'Mixed_5c_1_Conv2d_4_1x1_128/weights',
'Mixed_5c_1_Conv2d_4_1x1_128/biases',
'Mixed_5c_2_Conv2d_4_3x3_s2_256_depthwise/depthwise_weights',
'Mixed_5c_2_Conv2d_4_3x3_s2_256_depthwise/biases',
'Mixed_5c_2_Conv2d_4_3x3_s2_256/weights',
'Mixed_5c_2_Conv2d_4_3x3_s2_256/biases',
'Mixed_5c_1_Conv2d_5_1x1_128/weights',
'Mixed_5c_1_Conv2d_5_1x1_128/biases',
'Mixed_5c_2_Conv2d_5_3x3_s2_256_depthwise/depthwise_weights',
'Mixed_5c_2_Conv2d_5_3x3_s2_256_depthwise/biases',
'Mixed_5c_2_Conv2d_5_3x3_s2_256/weights',
'Mixed_5c_2_Conv2d_5_3x3_s2_256/biases',
])
expected_keras_variables = set([
'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/bias',
('FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_depthwise_conv/'
'depthwise_kernel'),
('FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_depthwise_conv/'
'bias'),
'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/bias',
'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/bias',
('FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_depthwise_conv/'
'depthwise_kernel'),
('FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_depthwise_conv/'
'bias'),
'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/bias',
'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/kernel',
'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/bias',
('FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_depthwise_conv/'
'depthwise_kernel'),
('FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_depthwise_conv/'
'bias'),
'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/kernel',
'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/bias',
])
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
sess.run(feature_maps)
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
if use_keras:
self.assertSetEqual(expected_keras_variables, actual_variable_set)
else:
self.assertSetEqual(expected_slim_variables, actual_variable_set)
@parameterized.parameters({'use_native_resize_op': True},
{'use_native_resize_op': False})
class FPNFeatureMapGeneratorTest(tf.test.TestCase, parameterized.TestCase):
def test_get_expected_feature_map_shapes(self, use_native_resize_op):
image_features = [
('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)),
('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)),
('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)),
('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32))
]
feature_maps = feature_map_generators.fpn_top_down_feature_maps(
image_features=image_features,
depth=128,
use_native_resize_op=use_native_resize_op)
expected_feature_map_shapes = {
'top_down_block2': (4, 8, 8, 128),
'top_down_block3': (4, 4, 4, 128),
'top_down_block4': (4, 2, 2, 128),
'top_down_block5': (4, 1, 1, 128)
}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = {key: value.shape
for key, value in out_feature_maps.items()}
self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes)
def test_use_bounded_activations_add_operations(self, use_native_resize_op):
tf_graph = tf.Graph()
with tf_graph.as_default():
image_features = [('block2',
tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)),
('block3',
tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)),
('block4',
tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)),
('block5',
tf.random_uniform([4, 1, 1, 256], dtype=tf.float32))]
feature_map_generators.fpn_top_down_feature_maps(
image_features=image_features,
depth=128,
use_bounded_activations=True,
use_native_resize_op=use_native_resize_op)
expected_added_operations = dict.fromkeys([
'top_down/clip_by_value', 'top_down/clip_by_value_1',
'top_down/clip_by_value_2', 'top_down/clip_by_value_3',
'top_down/clip_by_value_4', 'top_down/clip_by_value_5',
'top_down/clip_by_value_6'
])
op_names = {op.name: None for op in tf_graph.get_operations()}
self.assertDictContainsSubset(expected_added_operations, op_names)
def test_use_bounded_activations_clip_value(self, use_native_resize_op):
tf_graph = tf.Graph()
with tf_graph.as_default():
image_features = [
('block2', 255 * tf.ones([4, 8, 8, 256], dtype=tf.float32)),
('block3', 255 * tf.ones([4, 4, 4, 256], dtype=tf.float32)),
('block4', 255 * tf.ones([4, 2, 2, 256], dtype=tf.float32)),
('block5', 255 * tf.ones([4, 1, 1, 256], dtype=tf.float32))
]
feature_map_generators.fpn_top_down_feature_maps(
image_features=image_features,
depth=128,
use_bounded_activations=True,
use_native_resize_op=use_native_resize_op)
expected_clip_by_value_ops = [
'top_down/clip_by_value', 'top_down/clip_by_value_1',
'top_down/clip_by_value_2', 'top_down/clip_by_value_3',
'top_down/clip_by_value_4', 'top_down/clip_by_value_5',
'top_down/clip_by_value_6'
]
# Gathers activation tensors before and after clip_by_value operations.
activations = {}
for clip_by_value_op in expected_clip_by_value_ops:
clip_input_tensor = tf_graph.get_operation_by_name(
'{}/Minimum'.format(clip_by_value_op)).inputs[0]
clip_output_tensor = tf_graph.get_tensor_by_name(
'{}:0'.format(clip_by_value_op))
activations.update({
'before_{}'.format(clip_by_value_op): clip_input_tensor,
'after_{}'.format(clip_by_value_op): clip_output_tensor,
})
expected_lower_bound = -feature_map_generators.ACTIVATION_BOUND
expected_upper_bound = feature_map_generators.ACTIVATION_BOUND
init_op = tf.global_variables_initializer()
with self.test_session() as session:
session.run(init_op)
activations_output = session.run(activations)
for clip_by_value_op in expected_clip_by_value_ops:
# Before clipping, activations are beyound the expected bound because
# of large input image_features values.
activations_before_clipping = (
activations_output['before_{}'.format(clip_by_value_op)])
before_clipping_lower_bound = np.amin(activations_before_clipping)
before_clipping_upper_bound = np.amax(activations_before_clipping)
self.assertLessEqual(before_clipping_lower_bound,
expected_lower_bound)
self.assertGreaterEqual(before_clipping_upper_bound,
expected_upper_bound)
# After clipping, activations are bounded as expectation.
activations_after_clipping = (
activations_output['after_{}'.format(clip_by_value_op)])
after_clipping_lower_bound = np.amin(activations_after_clipping)
after_clipping_upper_bound = np.amax(activations_after_clipping)
self.assertGreaterEqual(after_clipping_lower_bound,
expected_lower_bound)
self.assertLessEqual(after_clipping_upper_bound, expected_upper_bound)
def test_get_expected_feature_map_shapes_with_depthwise(
self, use_native_resize_op):
image_features = [
('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)),
('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)),
('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)),
('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32))
]
feature_maps = feature_map_generators.fpn_top_down_feature_maps(
image_features=image_features,
depth=128,
use_depthwise=True,
use_native_resize_op=use_native_resize_op)
expected_feature_map_shapes = {
'top_down_block2': (4, 8, 8, 128),
'top_down_block3': (4, 4, 4, 128),
'top_down_block4': (4, 2, 2, 128),
'top_down_block5': (4, 1, 1, 128)
}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = {key: value.shape
for key, value in out_feature_maps.items()}
self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes)
class GetDepthFunctionTest(tf.test.TestCase):
def test_return_min_depth_when_multiplier_is_small(self):
depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5,
min_depth=16)
self.assertEqual(depth_fn(16), 16)
def test_return_correct_depth_with_multiplier(self):
depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5,
min_depth=16)
self.assertEqual(depth_fn(64), 32)
@parameterized.parameters(
{'replace_pool_with_conv': False},
{'replace_pool_with_conv': True},
)
class PoolingPyramidFeatureMapGeneratorTest(tf.test.TestCase):
def test_get_expected_feature_map_shapes(self, replace_pool_with_conv):
image_features = {
'image_features': tf.random_uniform([4, 19, 19, 1024])
}
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=1024,
num_layers=6,
image_features=image_features,
replace_pool_with_conv=replace_pool_with_conv)
expected_pool_feature_map_shapes = {
'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
'MaxPool2d_0_2x2': (4, 10, 10, 1024),
'MaxPool2d_1_2x2': (4, 5, 5, 1024),
'MaxPool2d_2_2x2': (4, 3, 3, 1024),
'MaxPool2d_3_2x2': (4, 2, 2, 1024),
'MaxPool2d_4_2x2': (4, 1, 1, 1024),
}
expected_conv_feature_map_shapes = {
'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
'Conv2d_0_3x3_s2_1024': (4, 10, 10, 1024),
'Conv2d_1_3x3_s2_1024': (4, 5, 5, 1024),
'Conv2d_2_3x3_s2_1024': (4, 3, 3, 1024),
'Conv2d_3_3x3_s2_1024': (4, 2, 2, 1024),
'Conv2d_4_3x3_s2_1024': (4, 1, 1, 1024),
}
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
out_feature_maps = sess.run(feature_maps)
out_feature_map_shapes = {key: value.shape
for key, value in out_feature_maps.items()}
if replace_pool_with_conv:
self.assertDictEqual(expected_conv_feature_map_shapes,
out_feature_map_shapes)
else:
self.assertDictEqual(expected_pool_feature_map_shapes,
out_feature_map_shapes)
def test_get_expected_variable_names(self, replace_pool_with_conv):
image_features = {
'image_features': tf.random_uniform([4, 19, 19, 1024])
}
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=1024,
num_layers=6,
image_features=image_features,
replace_pool_with_conv=replace_pool_with_conv)
expected_pool_variables = set([
'Base_Conv2d_1x1_1024/weights',
'Base_Conv2d_1x1_1024/biases',
])
expected_conv_variables = set([
'Base_Conv2d_1x1_1024/weights',
'Base_Conv2d_1x1_1024/biases',
'Conv2d_0_3x3_s2_1024/weights',
'Conv2d_0_3x3_s2_1024/biases',
'Conv2d_1_3x3_s2_1024/weights',
'Conv2d_1_3x3_s2_1024/biases',
'Conv2d_2_3x3_s2_1024/weights',
'Conv2d_2_3x3_s2_1024/biases',
'Conv2d_3_3x3_s2_1024/weights',
'Conv2d_3_3x3_s2_1024/biases',
'Conv2d_4_3x3_s2_1024/weights',
'Conv2d_4_3x3_s2_1024/biases',
])
init_op = tf.global_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
sess.run(feature_maps)
actual_variable_set = set(
[var.op.name for var in tf.trainable_variables()])
if replace_pool_with_conv:
self.assertSetEqual(expected_conv_variables, actual_variable_set)
else:
self.assertSetEqual(expected_pool_variables, actual_variable_set)
if __name__ == '__main__':
tf.test.main()