DR-App / object_detection /metrics /oid_od_challenge_evaluation_utils_test.py
pat229988's picture
Upload 653 files
9a393e2
raw
history blame
4.6 kB
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for oid_od_challenge_evaluation_util."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import pandas as pd
import tensorflow as tf
from object_detection.core import standard_fields
from object_detection.metrics import oid_od_challenge_evaluation_utils as utils
class OidOdChallengeEvaluationUtilTest(tf.test.TestCase):
def testBuildGroundtruthDictionary(self):
np_data = pd.DataFrame(
[['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.3, 0.5, 0.6, 1, None], [
'fe58ec1b06db2bb7', '/m/02gy9n', 0.1, 0.2, 0.3, 0.4, 0, None
], ['fe58ec1b06db2bb7', '/m/04bcr3', None, None, None, None, None, 1], [
'fe58ec1b06db2bb7', '/m/083vt', None, None, None, None, None, 0
], ['fe58ec1b06db2bb7', '/m/02gy9n', None, None, None, None, None, 1]],
columns=[
'ImageID', 'LabelName', 'XMin', 'XMax', 'YMin', 'YMax', 'IsGroupOf',
'ConfidenceImageLabel'
])
class_label_map = {'/m/04bcr3': 1, '/m/083vt': 2, '/m/02gy9n': 3}
groundtruth_dictionary = utils.build_groundtruth_boxes_dictionary(
np_data, class_label_map)
self.assertTrue(standard_fields.InputDataFields.groundtruth_boxes in
groundtruth_dictionary)
self.assertTrue(standard_fields.InputDataFields.groundtruth_classes in
groundtruth_dictionary)
self.assertTrue(standard_fields.InputDataFields.groundtruth_group_of in
groundtruth_dictionary)
self.assertTrue(standard_fields.InputDataFields.groundtruth_image_classes in
groundtruth_dictionary)
self.assertAllEqual(
np.array([1, 3]), groundtruth_dictionary[
standard_fields.InputDataFields.groundtruth_classes])
self.assertAllEqual(
np.array([1, 0]), groundtruth_dictionary[
standard_fields.InputDataFields.groundtruth_group_of])
expected_boxes_data = np.array([[0.5, 0.0, 0.6, 0.3], [0.3, 0.1, 0.4, 0.2]])
self.assertNDArrayNear(
expected_boxes_data, groundtruth_dictionary[
standard_fields.InputDataFields.groundtruth_boxes], 1e-5)
self.assertAllEqual(
np.array([1, 2, 3]), groundtruth_dictionary[
standard_fields.InputDataFields.groundtruth_image_classes])
def testBuildPredictionDictionary(self):
np_data = pd.DataFrame(
[['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.3, 0.5, 0.6, 0.1], [
'fe58ec1b06db2bb7', '/m/02gy9n', 0.1, 0.2, 0.3, 0.4, 0.2
], ['fe58ec1b06db2bb7', '/m/04bcr3', 0.0, 0.1, 0.2, 0.3, 0.3]],
columns=[
'ImageID', 'LabelName', 'XMin', 'XMax', 'YMin', 'YMax', 'Score'
])
class_label_map = {'/m/04bcr3': 1, '/m/083vt': 2, '/m/02gy9n': 3}
prediction_dictionary = utils.build_predictions_dictionary(
np_data, class_label_map)
self.assertTrue(standard_fields.DetectionResultFields.detection_boxes in
prediction_dictionary)
self.assertTrue(standard_fields.DetectionResultFields.detection_classes in
prediction_dictionary)
self.assertTrue(standard_fields.DetectionResultFields.detection_scores in
prediction_dictionary)
self.assertAllEqual(
np.array([1, 3, 1]), prediction_dictionary[
standard_fields.DetectionResultFields.detection_classes])
expected_boxes_data = np.array([[0.5, 0.0, 0.6, 0.3], [0.3, 0.1, 0.4, 0.2],
[0.2, 0.0, 0.3, 0.1]])
self.assertNDArrayNear(
expected_boxes_data, prediction_dictionary[
standard_fields.DetectionResultFields.detection_boxes], 1e-5)
self.assertNDArrayNear(
np.array([0.1, 0.2, 0.3]), prediction_dictionary[
standard_fields.DetectionResultFields.detection_scores], 1e-5)
if __name__ == '__main__':
tf.test.main()