pat229988's picture
Upload 653 files
9a393e2
raw
history blame
33 kB
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object_detection.meta_architectures.ssd_meta_arch."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.meta_architectures import ssd_meta_arch_test_lib
from object_detection.protos import model_pb2
from object_detection.utils import test_utils
slim = tf.contrib.slim
keras = tf.keras.layers
@parameterized.parameters(
{'use_keras': False},
{'use_keras': True},
)
class SsdMetaArchTest(ssd_meta_arch_test_lib.SSDMetaArchTestBase,
parameterized.TestCase):
def _create_model(
self,
apply_hard_mining=True,
normalize_loc_loss_by_codesize=False,
add_background_class=True,
random_example_sampling=False,
expected_loss_weights=model_pb2.DetectionModel().ssd.loss.NONE,
min_num_negative_samples=1,
desired_negative_sampling_ratio=3,
use_keras=False,
predict_mask=False,
use_static_shapes=False,
nms_max_size_per_class=5,
calibration_mapping_value=None):
return super(SsdMetaArchTest, self)._create_model(
model_fn=ssd_meta_arch.SSDMetaArch,
apply_hard_mining=apply_hard_mining,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
add_background_class=add_background_class,
random_example_sampling=random_example_sampling,
expected_loss_weights=expected_loss_weights,
min_num_negative_samples=min_num_negative_samples,
desired_negative_sampling_ratio=desired_negative_sampling_ratio,
use_keras=use_keras,
predict_mask=predict_mask,
use_static_shapes=use_static_shapes,
nms_max_size_per_class=nms_max_size_per_class,
calibration_mapping_value=calibration_mapping_value)
def test_preprocess_preserves_shapes_with_dynamic_input_image(
self, use_keras):
image_shapes = [(3, None, None, 3),
(None, 10, 10, 3),
(None, None, None, 3)]
model, _, _, _ = self._create_model(use_keras=use_keras)
for image_shape in image_shapes:
image_placeholder = tf.placeholder(tf.float32, shape=image_shape)
preprocessed_inputs, _ = model.preprocess(image_placeholder)
self.assertAllEqual(preprocessed_inputs.shape.as_list(), image_shape)
def test_preprocess_preserves_shape_with_static_input_image(self, use_keras):
def graph_fn(input_image):
model, _, _, _ = self._create_model(use_keras=use_keras)
return model.preprocess(input_image)
input_image = np.random.rand(2, 3, 3, 3).astype(np.float32)
preprocessed_inputs, _ = self.execute(graph_fn, [input_image])
self.assertAllEqual(preprocessed_inputs.shape, [2, 3, 3, 3])
def test_predict_result_shapes_on_image_with_dynamic_shape(self, use_keras):
batch_size = 3
image_size = 2
input_shapes = [(None, image_size, image_size, 3),
(batch_size, None, None, 3),
(None, None, None, 3)]
for input_shape in input_shapes:
tf_graph = tf.Graph()
with tf_graph.as_default():
model, num_classes, num_anchors, code_size = self._create_model(
use_keras=use_keras)
preprocessed_input_placeholder = tf.placeholder(tf.float32,
shape=input_shape)
prediction_dict = model.predict(
preprocessed_input_placeholder, true_image_shapes=None)
self.assertIn('box_encodings', prediction_dict)
self.assertIn('class_predictions_with_background', prediction_dict)
self.assertIn('feature_maps', prediction_dict)
self.assertIn('anchors', prediction_dict)
init_op = tf.global_variables_initializer()
with self.test_session(graph=tf_graph) as sess:
sess.run(init_op)
prediction_out = sess.run(prediction_dict,
feed_dict={
preprocessed_input_placeholder:
np.random.uniform(
size=(batch_size, 2, 2, 3))})
expected_box_encodings_shape_out = (batch_size, num_anchors, code_size)
expected_class_predictions_with_background_shape_out = (batch_size,
num_anchors,
num_classes + 1)
self.assertAllEqual(prediction_out['box_encodings'].shape,
expected_box_encodings_shape_out)
self.assertAllEqual(
prediction_out['class_predictions_with_background'].shape,
expected_class_predictions_with_background_shape_out)
def test_predict_result_shapes_on_image_with_static_shape(self, use_keras):
with tf.Graph().as_default():
_, num_classes, num_anchors, code_size = self._create_model(
use_keras=use_keras)
def graph_fn(input_image):
model, _, _, _ = self._create_model()
predictions = model.predict(input_image, true_image_shapes=None)
return (predictions['box_encodings'],
predictions['class_predictions_with_background'],
predictions['feature_maps'],
predictions['anchors'])
batch_size = 3
image_size = 2
channels = 3
input_image = np.random.rand(batch_size, image_size, image_size,
channels).astype(np.float32)
expected_box_encodings_shape = (batch_size, num_anchors, code_size)
expected_class_predictions_shape = (batch_size, num_anchors, num_classes+1)
(box_encodings, class_predictions, _, _) = self.execute(graph_fn,
[input_image])
self.assertAllEqual(box_encodings.shape, expected_box_encodings_shape)
self.assertAllEqual(class_predictions.shape,
expected_class_predictions_shape)
def test_postprocess_results_are_correct(self, use_keras):
batch_size = 2
image_size = 2
input_shapes = [(batch_size, image_size, image_size, 3),
(None, image_size, image_size, 3),
(batch_size, None, None, 3),
(None, None, None, 3)]
expected_boxes = [
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0], # pruned prediction
[0, 0, 0, 0]
], # padding
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0], # pruned prediction
[0, 0, 0, 0]
]
] # padding
expected_scores = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
expected_classes = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
expected_num_detections = np.array([3, 3])
raw_detection_boxes = [[[0., 0., 0.5, 0.5], [0., 0.5, 0.5, 1.],
[0.5, 0., 1., 0.5], [1., 1., 1.5, 1.5]],
[[0., 0., 0.5, 0.5], [0., 0.5, 0.5, 1.],
[0.5, 0., 1., 0.5], [1., 1., 1.5, 1.5]]]
raw_detection_scores = [[[0, 0], [0, 0], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0], [0, 0]]]
for input_shape in input_shapes:
tf_graph = tf.Graph()
with tf_graph.as_default():
model, _, _, _ = self._create_model(use_keras=use_keras)
input_placeholder = tf.placeholder(tf.float32, shape=input_shape)
preprocessed_inputs, true_image_shapes = model.preprocess(
input_placeholder)
prediction_dict = model.predict(preprocessed_inputs,
true_image_shapes)
detections = model.postprocess(prediction_dict, true_image_shapes)
self.assertIn('detection_boxes', detections)
self.assertIn('detection_scores', detections)
self.assertIn('detection_classes', detections)
self.assertIn('num_detections', detections)
self.assertIn('raw_detection_boxes', detections)
self.assertIn('raw_detection_scores', detections)
init_op = tf.global_variables_initializer()
with self.test_session(graph=tf_graph) as sess:
sess.run(init_op)
detections_out = sess.run(detections,
feed_dict={
input_placeholder:
np.random.uniform(
size=(batch_size, 2, 2, 3))})
for image_idx in range(batch_size):
self.assertTrue(
test_utils.first_rows_close_as_set(
detections_out['detection_boxes'][image_idx].tolist(),
expected_boxes[image_idx]))
self.assertAllClose(detections_out['detection_scores'], expected_scores)
self.assertAllClose(detections_out['detection_classes'], expected_classes)
self.assertAllClose(detections_out['num_detections'],
expected_num_detections)
self.assertAllEqual(detections_out['raw_detection_boxes'],
raw_detection_boxes)
self.assertAllEqual(detections_out['raw_detection_scores'],
raw_detection_scores)
def test_postprocess_results_are_correct_static(self, use_keras):
with tf.Graph().as_default():
_, _, _, _ = self._create_model(use_keras=use_keras)
def graph_fn(input_image):
model, _, _, _ = self._create_model(use_static_shapes=True,
nms_max_size_per_class=4)
preprocessed_inputs, true_image_shapes = model.preprocess(input_image)
prediction_dict = model.predict(preprocessed_inputs,
true_image_shapes)
detections = model.postprocess(prediction_dict, true_image_shapes)
return (detections['detection_boxes'], detections['detection_scores'],
detections['detection_classes'], detections['num_detections'])
batch_size = 2
image_size = 2
channels = 3
input_image = np.random.rand(batch_size, image_size, image_size,
channels).astype(np.float32)
expected_boxes = [
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0]
], # padding
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0]
]
] # padding
expected_scores = [[0, 0, 0, 0], [0, 0, 0, 0]]
expected_classes = [[0, 0, 0, 0], [0, 0, 0, 0]]
expected_num_detections = np.array([3, 3])
(detection_boxes, detection_scores, detection_classes,
num_detections) = self.execute(graph_fn, [input_image])
for image_idx in range(batch_size):
self.assertTrue(test_utils.first_rows_close_as_set(
detection_boxes[image_idx][
0:expected_num_detections[image_idx]].tolist(),
expected_boxes[image_idx][0:expected_num_detections[image_idx]]))
self.assertAllClose(
detection_scores[image_idx][0:expected_num_detections[image_idx]],
expected_scores[image_idx][0:expected_num_detections[image_idx]])
self.assertAllClose(
detection_classes[image_idx][0:expected_num_detections[image_idx]],
expected_classes[image_idx][0:expected_num_detections[image_idx]])
self.assertAllClose(num_detections,
expected_num_detections)
def test_postprocess_results_are_correct_with_calibration(self, use_keras):
batch_size = 2
image_size = 2
input_shapes = [(batch_size, image_size, image_size, 3),
(None, image_size, image_size, 3),
(batch_size, None, None, 3),
(None, None, None, 3)]
expected_boxes = [
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0], # pruned prediction
[0, 0, 0, 0]
], # padding
[
[0, 0, .5, .5],
[0, .5, .5, 1],
[.5, 0, 1, .5],
[0, 0, 0, 0], # pruned prediction
[0, 0, 0, 0]
]
] # padding
# Calibration mapping value below is set to map all scores to 0.5, except
# for the last two detections in each batch (see expected number of
# detections below.
expected_scores = [[0.5, 0.5, 0.5, 0., 0.], [0.5, 0.5, 0.5, 0., 0.]]
expected_classes = [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
expected_num_detections = np.array([3, 3])
raw_detection_boxes = [[[0., 0., 0.5, 0.5], [0., 0.5, 0.5, 1.],
[0.5, 0., 1., 0.5], [1., 1., 1.5, 1.5]],
[[0., 0., 0.5, 0.5], [0., 0.5, 0.5, 1.],
[0.5, 0., 1., 0.5], [1., 1., 1.5, 1.5]]]
raw_detection_scores = [[[0, 0], [0, 0], [0, 0], [0, 0]],
[[0, 0], [0, 0], [0, 0], [0, 0]]]
for input_shape in input_shapes:
tf_graph = tf.Graph()
with tf_graph.as_default():
model, _, _, _ = self._create_model(use_keras=use_keras,
calibration_mapping_value=0.5)
input_placeholder = tf.placeholder(tf.float32, shape=input_shape)
preprocessed_inputs, true_image_shapes = model.preprocess(
input_placeholder)
prediction_dict = model.predict(preprocessed_inputs,
true_image_shapes)
detections = model.postprocess(prediction_dict, true_image_shapes)
self.assertIn('detection_boxes', detections)
self.assertIn('detection_scores', detections)
self.assertIn('detection_classes', detections)
self.assertIn('num_detections', detections)
self.assertIn('raw_detection_boxes', detections)
self.assertIn('raw_detection_scores', detections)
init_op = tf.global_variables_initializer()
with self.test_session(graph=tf_graph) as sess:
sess.run(init_op)
detections_out = sess.run(detections,
feed_dict={
input_placeholder:
np.random.uniform(
size=(batch_size, 2, 2, 3))})
for image_idx in range(batch_size):
self.assertTrue(
test_utils.first_rows_close_as_set(
detections_out['detection_boxes'][image_idx].tolist(),
expected_boxes[image_idx]))
self.assertAllClose(detections_out['detection_scores'], expected_scores)
self.assertAllClose(detections_out['detection_classes'], expected_classes)
self.assertAllClose(detections_out['num_detections'],
expected_num_detections)
self.assertAllEqual(detections_out['raw_detection_boxes'],
raw_detection_boxes)
self.assertAllEqual(detections_out['raw_detection_scores'],
raw_detection_scores)
def test_loss_results_are_correct(self, use_keras):
with tf.Graph().as_default():
_, num_classes, num_anchors, _ = self._create_model(use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2]
model, _, _, _ = self._create_model(apply_hard_mining=False)
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list)
prediction_dict = model.predict(preprocessed_tensor,
true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (self._get_value_for_matching_key(loss_dict,
'Loss/localization_loss'),
self._get_value_for_matching_key(loss_dict,
'Loss/classification_loss'))
batch_size = 2
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.0
expected_classification_loss = (batch_size * num_anchors
* (num_classes+1) * np.log(2.0))
(localization_loss,
classification_loss) = self.execute(graph_fn, [preprocessed_input,
groundtruth_boxes1,
groundtruth_boxes2,
groundtruth_classes1,
groundtruth_classes2])
self.assertAllClose(localization_loss, expected_localization_loss)
self.assertAllClose(classification_loss, expected_classification_loss)
def test_loss_results_are_correct_with_normalize_by_codesize_true(
self, use_keras):
with tf.Graph().as_default():
_, _, _, _ = self._create_model(use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2]
model, _, _, _ = self._create_model(apply_hard_mining=False,
normalize_loc_loss_by_codesize=True,
use_keras=use_keras)
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list)
prediction_dict = model.predict(preprocessed_tensor,
true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (self._get_value_for_matching_key(loss_dict,
'Loss/localization_loss'),)
batch_size = 2
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, 1, 1]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, 1, 1]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.5 / 4
localization_loss = self.execute(graph_fn, [preprocessed_input,
groundtruth_boxes1,
groundtruth_boxes2,
groundtruth_classes1,
groundtruth_classes2])
self.assertAllClose(localization_loss, expected_localization_loss)
def test_loss_results_are_correct_with_hard_example_mining(self, use_keras):
with tf.Graph().as_default():
_, num_classes, num_anchors, _ = self._create_model(use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2]
model, _, _, _ = self._create_model()
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list)
prediction_dict = model.predict(preprocessed_tensor,
true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (self._get_value_for_matching_key(loss_dict,
'Loss/localization_loss'),
self._get_value_for_matching_key(loss_dict,
'Loss/classification_loss'))
batch_size = 2
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.0
expected_classification_loss = (batch_size * num_anchors
* (num_classes+1) * np.log(2.0))
(localization_loss, classification_loss) = self.execute_cpu(
graph_fn, [
preprocessed_input, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2
])
self.assertAllClose(localization_loss, expected_localization_loss)
self.assertAllClose(classification_loss, expected_classification_loss)
def test_loss_results_are_correct_without_add_background_class(
self, use_keras):
with tf.Graph().as_default():
_, num_classes, num_anchors, _ = self._create_model(
add_background_class=False, use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2]
model, _, _, _ = self._create_model(
apply_hard_mining=False, add_background_class=False,
use_keras=use_keras)
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list)
prediction_dict = model.predict(
preprocessed_tensor, true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (loss_dict['Loss/localization_loss'],
loss_dict['Loss/classification_loss'])
batch_size = 2
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.0
expected_classification_loss = (
batch_size * num_anchors * num_classes * np.log(2.0))
(localization_loss, classification_loss) = self.execute(
graph_fn, [
preprocessed_input, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2
])
self.assertAllClose(localization_loss, expected_localization_loss)
self.assertAllClose(classification_loss, expected_classification_loss)
def test_loss_results_are_correct_with_losses_mask(self, use_keras):
with tf.Graph().as_default():
_, num_classes, num_anchors, _ = self._create_model(use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_boxes3, groundtruth_classes1, groundtruth_classes2,
groundtruth_classes3):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2,
groundtruth_boxes3]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2,
groundtruth_classes3]
is_annotated_list = [tf.constant(True), tf.constant(True),
tf.constant(False)]
model, _, _, _ = self._create_model(apply_hard_mining=False)
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list,
is_annotated_list=is_annotated_list)
prediction_dict = model.predict(preprocessed_tensor,
true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (self._get_value_for_matching_key(loss_dict,
'Loss/localization_loss'),
self._get_value_for_matching_key(loss_dict,
'Loss/classification_loss'))
batch_size = 3
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes3 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
groundtruth_classes3 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.0
# Note that we are subtracting 1 from batch_size, since the final image is
# not annotated.
expected_classification_loss = ((batch_size - 1) * num_anchors
* (num_classes+1) * np.log(2.0))
(localization_loss,
classification_loss) = self.execute(graph_fn, [preprocessed_input,
groundtruth_boxes1,
groundtruth_boxes2,
groundtruth_boxes3,
groundtruth_classes1,
groundtruth_classes2,
groundtruth_classes3])
self.assertAllClose(localization_loss, expected_localization_loss)
self.assertAllClose(classification_loss, expected_classification_loss)
def test_restore_map_for_detection_ckpt(self, use_keras):
model, _, _, _ = self._create_model(use_keras=use_keras)
model.predict(tf.constant(np.array([[[[0, 0], [1, 1]], [[1, 0], [0, 1]]]],
dtype=np.float32)),
true_image_shapes=None)
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
save_path = self.get_temp_dir()
with self.test_session() as sess:
sess.run(init_op)
saved_model_path = saver.save(sess, save_path)
var_map = model.restore_map(
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=False)
self.assertIsInstance(var_map, dict)
saver = tf.train.Saver(var_map)
saver.restore(sess, saved_model_path)
for var in sess.run(tf.report_uninitialized_variables()):
self.assertNotIn('FeatureExtractor', var)
def test_restore_map_for_classification_ckpt(self, use_keras):
# Define mock tensorflow classification graph and save variables.
test_graph_classification = tf.Graph()
with test_graph_classification.as_default():
image = tf.placeholder(dtype=tf.float32, shape=[1, 20, 20, 3])
if use_keras:
with tf.name_scope('mock_model'):
layer_one = keras.Conv2D(32, kernel_size=1, name='layer1')
net = layer_one(image)
layer_two = keras.Conv2D(3, kernel_size=1, name='layer2')
layer_two(net)
else:
with tf.variable_scope('mock_model'):
net = slim.conv2d(image, num_outputs=32, kernel_size=1,
scope='layer1')
slim.conv2d(net, num_outputs=3, kernel_size=1, scope='layer2')
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
save_path = self.get_temp_dir()
with self.test_session(graph=test_graph_classification) as sess:
sess.run(init_op)
saved_model_path = saver.save(sess, save_path)
# Create tensorflow detection graph and load variables from
# classification checkpoint.
test_graph_detection = tf.Graph()
with test_graph_detection.as_default():
model, _, _, _ = self._create_model(use_keras=use_keras)
inputs_shape = [2, 2, 2, 3]
inputs = tf.to_float(tf.random_uniform(
inputs_shape, minval=0, maxval=255, dtype=tf.int32))
preprocessed_inputs, true_image_shapes = model.preprocess(inputs)
prediction_dict = model.predict(preprocessed_inputs, true_image_shapes)
model.postprocess(prediction_dict, true_image_shapes)
another_variable = tf.Variable([17.0], name='another_variable') # pylint: disable=unused-variable
var_map = model.restore_map(fine_tune_checkpoint_type='classification')
self.assertNotIn('another_variable', var_map)
self.assertIsInstance(var_map, dict)
saver = tf.train.Saver(var_map)
with self.test_session(graph=test_graph_detection) as sess:
saver.restore(sess, saved_model_path)
for var in sess.run(tf.report_uninitialized_variables()):
self.assertNotIn('FeatureExtractor', var)
def test_load_all_det_checkpoint_vars(self, use_keras):
test_graph_detection = tf.Graph()
with test_graph_detection.as_default():
model, _, _, _ = self._create_model(use_keras=use_keras)
inputs_shape = [2, 2, 2, 3]
inputs = tf.to_float(
tf.random_uniform(inputs_shape, minval=0, maxval=255, dtype=tf.int32))
preprocessed_inputs, true_image_shapes = model.preprocess(inputs)
prediction_dict = model.predict(preprocessed_inputs, true_image_shapes)
model.postprocess(prediction_dict, true_image_shapes)
another_variable = tf.Variable([17.0], name='another_variable') # pylint: disable=unused-variable
var_map = model.restore_map(
fine_tune_checkpoint_type='detection',
load_all_detection_checkpoint_vars=True)
self.assertIsInstance(var_map, dict)
self.assertIn('another_variable', var_map)
def test_loss_results_are_correct_with_random_example_sampling(
self,
use_keras):
with tf.Graph().as_default():
_, num_classes, _, _ = self._create_model(
random_example_sampling=True, use_keras=use_keras)
def graph_fn(preprocessed_tensor, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2):
groundtruth_boxes_list = [groundtruth_boxes1, groundtruth_boxes2]
groundtruth_classes_list = [groundtruth_classes1, groundtruth_classes2]
model, _, _, _ = self._create_model(random_example_sampling=True,
use_keras=use_keras)
model.provide_groundtruth(groundtruth_boxes_list,
groundtruth_classes_list)
prediction_dict = model.predict(
preprocessed_tensor, true_image_shapes=None)
loss_dict = model.loss(prediction_dict, true_image_shapes=None)
return (self._get_value_for_matching_key(loss_dict,
'Loss/localization_loss'),
self._get_value_for_matching_key(loss_dict,
'Loss/classification_loss'))
batch_size = 2
preprocessed_input = np.random.rand(batch_size, 2, 2, 3).astype(np.float32)
groundtruth_boxes1 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_boxes2 = np.array([[0, 0, .5, .5]], dtype=np.float32)
groundtruth_classes1 = np.array([[1]], dtype=np.float32)
groundtruth_classes2 = np.array([[1]], dtype=np.float32)
expected_localization_loss = 0.0
# Among 4 anchors (1 positive, 3 negative) in this test, only 2 anchors are
# selected (1 positive, 1 negative) since random sampler will adjust number
# of negative examples to make sure positive example fraction in the batch
# is 0.5.
expected_classification_loss = (
batch_size * 2 * (num_classes + 1) * np.log(2.0))
(localization_loss, classification_loss) = self.execute_cpu(
graph_fn, [
preprocessed_input, groundtruth_boxes1, groundtruth_boxes2,
groundtruth_classes1, groundtruth_classes2
])
self.assertAllClose(localization_loss, expected_localization_loss)
self.assertAllClose(classification_loss, expected_classification_loss)
if __name__ == '__main__':
tf.test.main()