|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.meta_architectures.rfcn_meta_arch.""" |
|
|
|
import tensorflow as tf |
|
|
|
from object_detection.meta_architectures import faster_rcnn_meta_arch_test_lib |
|
from object_detection.meta_architectures import rfcn_meta_arch |
|
|
|
|
|
class RFCNMetaArchTest( |
|
faster_rcnn_meta_arch_test_lib.FasterRCNNMetaArchTestBase): |
|
|
|
def _get_second_stage_box_predictor_text_proto(self): |
|
box_predictor_text_proto = """ |
|
rfcn_box_predictor { |
|
conv_hyperparams { |
|
op: CONV |
|
activation: NONE |
|
regularizer { |
|
l2_regularizer { |
|
weight: 0.0005 |
|
} |
|
} |
|
initializer { |
|
variance_scaling_initializer { |
|
factor: 1.0 |
|
uniform: true |
|
mode: FAN_AVG |
|
} |
|
} |
|
} |
|
} |
|
""" |
|
return box_predictor_text_proto |
|
|
|
def _get_model(self, box_predictor, **common_kwargs): |
|
return rfcn_meta_arch.RFCNMetaArch( |
|
second_stage_rfcn_box_predictor=box_predictor, **common_kwargs) |
|
|
|
def _get_box_classifier_features_shape(self, |
|
image_size, |
|
batch_size, |
|
max_num_proposals, |
|
initial_crop_size, |
|
maxpool_stride, |
|
num_features): |
|
return (batch_size, image_size, image_size, num_features) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|