|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for dataset_builder.""" |
|
|
|
import os |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from google.protobuf import text_format |
|
|
|
from object_detection.builders import dataset_builder |
|
from object_detection.core import standard_fields as fields |
|
from object_detection.protos import input_reader_pb2 |
|
from object_detection.utils import dataset_util |
|
|
|
|
|
class DatasetBuilderTest(tf.test.TestCase): |
|
|
|
def create_tf_record(self, has_additional_channels=False, num_examples=1): |
|
path = os.path.join(self.get_temp_dir(), 'tfrecord') |
|
writer = tf.python_io.TFRecordWriter(path) |
|
|
|
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) |
|
additional_channels_tensor = np.random.randint( |
|
255, size=(4, 5, 1)).astype(np.uint8) |
|
flat_mask = (4 * 5) * [1.0] |
|
with self.test_session(): |
|
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() |
|
encoded_additional_channels_jpeg = tf.image.encode_jpeg( |
|
tf.constant(additional_channels_tensor)).eval() |
|
for i in range(num_examples): |
|
features = { |
|
'image/source_id': dataset_util.bytes_feature(str(i)), |
|
'image/encoded': dataset_util.bytes_feature(encoded_jpeg), |
|
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), |
|
'image/height': dataset_util.int64_feature(4), |
|
'image/width': dataset_util.int64_feature(5), |
|
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), |
|
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), |
|
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), |
|
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), |
|
'image/object/class/label': dataset_util.int64_list_feature([2]), |
|
'image/object/mask': dataset_util.float_list_feature(flat_mask), |
|
} |
|
if has_additional_channels: |
|
additional_channels_key = 'image/additional_channels/encoded' |
|
features[additional_channels_key] = dataset_util.bytes_list_feature( |
|
[encoded_additional_channels_jpeg] * 2) |
|
example = tf.train.Example(features=tf.train.Features(feature=features)) |
|
writer.write(example.SerializeToString()) |
|
writer.close() |
|
|
|
return path |
|
|
|
def test_build_tf_record_input_reader(self): |
|
tf_record_path = self.create_tf_record() |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build(input_reader_proto, batch_size=1)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
|
|
self.assertTrue( |
|
fields.InputDataFields.groundtruth_instance_masks not in output_dict) |
|
self.assertEquals((1, 4, 5, 3), |
|
output_dict[fields.InputDataFields.image].shape) |
|
self.assertAllEqual([[2]], |
|
output_dict[fields.InputDataFields.groundtruth_classes]) |
|
self.assertEquals( |
|
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) |
|
self.assertAllEqual( |
|
[0.0, 0.0, 1.0, 1.0], |
|
output_dict[fields.InputDataFields.groundtruth_boxes][0][0]) |
|
|
|
def test_build_tf_record_input_reader_and_load_instance_masks(self): |
|
tf_record_path = self.create_tf_record() |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
load_instance_masks: true |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build(input_reader_proto, batch_size=1)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
self.assertAllEqual( |
|
(1, 1, 4, 5), |
|
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) |
|
|
|
def test_build_tf_record_input_reader_with_batch_size_two(self): |
|
tf_record_path = self.create_tf_record() |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
|
|
def one_hot_class_encoding_fn(tensor_dict): |
|
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot( |
|
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3) |
|
return tensor_dict |
|
|
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build( |
|
input_reader_proto, |
|
transform_input_data_fn=one_hot_class_encoding_fn, |
|
batch_size=2)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
|
|
self.assertAllEqual([2, 4, 5, 3], |
|
output_dict[fields.InputDataFields.image].shape) |
|
self.assertAllEqual( |
|
[2, 1, 3], |
|
output_dict[fields.InputDataFields.groundtruth_classes].shape) |
|
self.assertAllEqual( |
|
[2, 1, 4], output_dict[fields.InputDataFields.groundtruth_boxes].shape) |
|
self.assertAllEqual([[[0.0, 0.0, 1.0, 1.0]], [[0.0, 0.0, 1.0, 1.0]]], |
|
output_dict[fields.InputDataFields.groundtruth_boxes]) |
|
|
|
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self): |
|
tf_record_path = self.create_tf_record() |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
load_instance_masks: true |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
|
|
def one_hot_class_encoding_fn(tensor_dict): |
|
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot( |
|
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3) |
|
return tensor_dict |
|
|
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build( |
|
input_reader_proto, |
|
transform_input_data_fn=one_hot_class_encoding_fn, |
|
batch_size=2)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
|
|
self.assertAllEqual( |
|
[2, 1, 4, 5], |
|
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) |
|
|
|
def test_raises_error_with_no_input_paths(self): |
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
load_instance_masks: true |
|
""" |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
with self.assertRaises(ValueError): |
|
dataset_builder.build(input_reader_proto, batch_size=1) |
|
|
|
def test_sample_all_data(self): |
|
tf_record_path = self.create_tf_record(num_examples=2) |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
sample_1_of_n_examples: 1 |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build(input_reader_proto, batch_size=1)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id]) |
|
output_dict = sess.run(tensor_dict) |
|
self.assertEquals(['1'], output_dict[fields.InputDataFields.source_id]) |
|
|
|
def test_sample_one_of_n_shards(self): |
|
tf_record_path = self.create_tf_record(num_examples=4) |
|
|
|
input_reader_text_proto = """ |
|
shuffle: false |
|
num_readers: 1 |
|
sample_1_of_n_examples: 2 |
|
tf_record_input_reader {{ |
|
input_path: '{0}' |
|
}} |
|
""".format(tf_record_path) |
|
input_reader_proto = input_reader_pb2.InputReader() |
|
text_format.Merge(input_reader_text_proto, input_reader_proto) |
|
tensor_dict = dataset_builder.make_initializable_iterator( |
|
dataset_builder.build(input_reader_proto, batch_size=1)).get_next() |
|
|
|
with tf.train.MonitoredSession() as sess: |
|
output_dict = sess.run(tensor_dict) |
|
self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id]) |
|
output_dict = sess.run(tensor_dict) |
|
self.assertEquals(['2'], output_dict[fields.InputDataFields.source_id]) |
|
|
|
|
|
class ReadDatasetTest(tf.test.TestCase): |
|
|
|
def setUp(self): |
|
self._path_template = os.path.join(self.get_temp_dir(), 'examples_%s.txt') |
|
|
|
for i in range(5): |
|
path = self._path_template % i |
|
with tf.gfile.Open(path, 'wb') as f: |
|
f.write('\n'.join([str(i + 1), str((i + 1) * 10)])) |
|
|
|
self._shuffle_path_template = os.path.join(self.get_temp_dir(), |
|
'shuffle_%s.txt') |
|
for i in range(2): |
|
path = self._shuffle_path_template % i |
|
with tf.gfile.Open(path, 'wb') as f: |
|
f.write('\n'.join([str(i)] * 5)) |
|
|
|
def _get_dataset_next(self, files, config, batch_size): |
|
|
|
def decode_func(value): |
|
return [tf.string_to_number(value, out_type=tf.int32)] |
|
|
|
dataset = dataset_builder.read_dataset(tf.data.TextLineDataset, files, |
|
config) |
|
dataset = dataset.map(decode_func) |
|
dataset = dataset.batch(batch_size) |
|
return dataset.make_one_shot_iterator().get_next() |
|
|
|
def test_make_initializable_iterator_with_hashTable(self): |
|
keys = [1, 0, -1] |
|
dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]]) |
|
table = tf.contrib.lookup.HashTable( |
|
initializer=tf.contrib.lookup.KeyValueTensorInitializer( |
|
keys=keys, values=list(reversed(keys))), |
|
default_value=100) |
|
dataset = dataset.map(table.lookup) |
|
data = dataset_builder.make_initializable_iterator(dataset).get_next() |
|
init = tf.tables_initializer() |
|
|
|
with self.test_session() as sess: |
|
sess.run(init) |
|
self.assertAllEqual(sess.run(data), [-1, 100, 1, 100]) |
|
|
|
def test_read_dataset(self): |
|
config = input_reader_pb2.InputReader() |
|
config.num_readers = 1 |
|
config.shuffle = False |
|
|
|
data = self._get_dataset_next( |
|
[self._path_template % '*'], config, batch_size=20) |
|
with self.test_session() as sess: |
|
self.assertAllEqual( |
|
sess.run(data), [[ |
|
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5, |
|
50 |
|
]]) |
|
|
|
def test_reduce_num_reader(self): |
|
config = input_reader_pb2.InputReader() |
|
config.num_readers = 10 |
|
config.shuffle = False |
|
|
|
data = self._get_dataset_next( |
|
[self._path_template % '*'], config, batch_size=20) |
|
with self.test_session() as sess: |
|
self.assertAllEqual( |
|
sess.run(data), [[ |
|
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5, |
|
50 |
|
]]) |
|
|
|
def test_enable_shuffle(self): |
|
config = input_reader_pb2.InputReader() |
|
config.num_readers = 1 |
|
config.shuffle = True |
|
|
|
tf.set_random_seed(1) |
|
data = self._get_dataset_next( |
|
[self._shuffle_path_template % '*'], config, batch_size=10) |
|
expected_non_shuffle_output = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] |
|
|
|
with self.test_session() as sess: |
|
self.assertTrue( |
|
np.any(np.not_equal(sess.run(data), expected_non_shuffle_output))) |
|
|
|
def test_disable_shuffle_(self): |
|
config = input_reader_pb2.InputReader() |
|
config.num_readers = 1 |
|
config.shuffle = False |
|
|
|
data = self._get_dataset_next( |
|
[self._shuffle_path_template % '*'], config, batch_size=10) |
|
expected_non_shuffle_output = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] |
|
|
|
with self.test_session() as sess: |
|
self.assertAllEqual(sess.run(data), [expected_non_shuffle_output]) |
|
|
|
def test_read_dataset_single_epoch(self): |
|
config = input_reader_pb2.InputReader() |
|
config.num_epochs = 1 |
|
config.num_readers = 1 |
|
config.shuffle = False |
|
|
|
data = self._get_dataset_next( |
|
[self._path_template % '0'], config, batch_size=30) |
|
with self.test_session() as sess: |
|
|
|
self.assertAllEqual(sess.run(data), [[1, 10]]) |
|
self.assertRaises(tf.errors.OutOfRangeError, sess.run, data) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|