|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tests for object_detection.predictors.rfcn_box_predictor.""" |
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
from google.protobuf import text_format |
|
from object_detection.builders import hyperparams_builder |
|
from object_detection.predictors import rfcn_box_predictor as box_predictor |
|
from object_detection.protos import hyperparams_pb2 |
|
from object_detection.utils import test_case |
|
|
|
|
|
class RfcnBoxPredictorTest(test_case.TestCase): |
|
|
|
def _build_arg_scope_with_conv_hyperparams(self): |
|
conv_hyperparams = hyperparams_pb2.Hyperparams() |
|
conv_hyperparams_text_proto = """ |
|
regularizer { |
|
l2_regularizer { |
|
} |
|
} |
|
initializer { |
|
truncated_normal_initializer { |
|
} |
|
} |
|
""" |
|
text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) |
|
return hyperparams_builder.build(conv_hyperparams, is_training=True) |
|
|
|
def test_get_correct_box_encoding_and_class_prediction_shapes(self): |
|
|
|
def graph_fn(image_features, proposal_boxes): |
|
rfcn_box_predictor = box_predictor.RfcnBoxPredictor( |
|
is_training=False, |
|
num_classes=2, |
|
conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), |
|
num_spatial_bins=[3, 3], |
|
depth=4, |
|
crop_size=[12, 12], |
|
box_code_size=4 |
|
) |
|
box_predictions = rfcn_box_predictor.predict( |
|
[image_features], num_predictions_per_location=[1], |
|
scope='BoxPredictor', |
|
proposal_boxes=proposal_boxes) |
|
box_encodings = tf.concat( |
|
box_predictions[box_predictor.BOX_ENCODINGS], axis=1) |
|
class_predictions_with_background = tf.concat( |
|
box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], |
|
axis=1) |
|
return (box_encodings, class_predictions_with_background) |
|
|
|
image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) |
|
proposal_boxes = np.random.rand(4, 2, 4).astype(np.float32) |
|
(box_encodings, class_predictions_with_background) = self.execute( |
|
graph_fn, [image_features, proposal_boxes]) |
|
|
|
self.assertAllEqual(box_encodings.shape, [8, 1, 2, 4]) |
|
self.assertAllEqual(class_predictions_with_background.shape, [8, 1, 3]) |
|
|
|
|
|
if __name__ == '__main__': |
|
tf.test.main() |
|
|