Commit
·
1c54a6f
1
Parent(s):
99036ae
add files
Browse files- .gitattributes +3 -0
- README.md +5 -4
- app.py +175 -0
- idx_item_mapping.pkl +3 -0
- image.index +3 -0
- requirements.txt +13 -0
- text.index +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
image.index filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
text.index filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
idx_item_mapping.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title: Tourist
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Tourist Attractions Multimodal Rag
|
| 3 |
+
emoji: 👀
|
| 4 |
colorFrom: red
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.46.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
python_version: 3.10.11
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import sys
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
|
| 6 |
+
import faiss
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
| 12 |
+
from transformers import AutoImageProcessor, AutoTokenizer, AutoModel, AutoModelForCausalLM, BitsAndBytesConfig
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
from datasets import load_dataset
|
| 15 |
+
from hazm import Normalizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
DATASET_NAME = 'alisharifi/tourist-attractions-text-image-data'
|
| 19 |
+
TEST_DATA_NAME = 'alisharifi/tourist-attractions-test-data'
|
| 20 |
+
|
| 21 |
+
dataset = load_dataset(DATASET_NAME, streaming=True)
|
| 22 |
+
test_data_name = load_dataset(TEST_DATA_NAME, streaming=True)
|
| 23 |
+
|
| 24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 25 |
+
|
| 26 |
+
vision_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-base')
|
| 27 |
+
vision_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
|
| 28 |
+
|
| 29 |
+
language_model = SentenceTransformer("xmanii/maux-gte-persian", trust_remote_code=True).to(device)
|
| 30 |
+
|
| 31 |
+
quantization_config = BitsAndBytesConfig(
|
| 32 |
+
load_in_4bit=True,
|
| 33 |
+
bnb_4bit_use_double_quant=True,
|
| 34 |
+
bnb_4bit_quant_type="nf4",
|
| 35 |
+
)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
"universitytehran/PersianMind-v1.0",
|
| 38 |
+
quantization_config=quantization_config,
|
| 39 |
+
device_map="auto"
|
| 40 |
+
)
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 42 |
+
"universitytehran/PersianMind-v1.0",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
normalizer = Normalizer()
|
| 46 |
+
|
| 47 |
+
language_model.eval()
|
| 48 |
+
vision_model.eval()
|
| 49 |
+
|
| 50 |
+
# Load FAISS indices
|
| 51 |
+
text_index = faiss.read_index("text.index")
|
| 52 |
+
image_index = faiss.read_index("image.index")
|
| 53 |
+
|
| 54 |
+
# Load the index-item mapping
|
| 55 |
+
with open("idx_item_mapping.pkl", "rb") as f:
|
| 56 |
+
idx_item_mapping = pickle.load(f)
|
| 57 |
+
|
| 58 |
+
print("FAISS indices and index-item mapping loaded.")
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def search_by_text(query_text, k=5):
|
| 62 |
+
"""
|
| 63 |
+
Searches the database for the top k items most similar to the query text.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
query_text: The text query.
|
| 67 |
+
k: The number of top similar items to return.
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
A list of dictionaries, where each dictionary contains the item details
|
| 71 |
+
for the top k similar items.
|
| 72 |
+
"""
|
| 73 |
+
normalized_query = normalizer.normalize(query_text)
|
| 74 |
+
query_embedding = language_model.encode(normalized_query)
|
| 75 |
+
|
| 76 |
+
query_embedding_np = query_embedding[np.newaxis, :]
|
| 77 |
+
faiss.normalize_L2(query_embedding_np)
|
| 78 |
+
|
| 79 |
+
distances, indices = text_index.search(query_embedding_np, 100)
|
| 80 |
+
|
| 81 |
+
unique_texts = set()
|
| 82 |
+
results = []
|
| 83 |
+
for idx in indices[0]:
|
| 84 |
+
text = idx_item_mapping[idx]
|
| 85 |
+
if text not in unique_texts:
|
| 86 |
+
unique_texts.add(text)
|
| 87 |
+
results.append(text)
|
| 88 |
+
if len(results) == k:
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
return results
|
| 92 |
+
|
| 93 |
+
def search_by_image(query_image, k=5):
|
| 94 |
+
"""
|
| 95 |
+
Searches the database for the top k items most similar to the query text.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
query_text: The text query.
|
| 99 |
+
k: The number of top similar items to return.
|
| 100 |
+
|
| 101 |
+
Returns:
|
| 102 |
+
A list of dictionaries, where each dictionary contains the item details
|
| 103 |
+
for the top k similar items.
|
| 104 |
+
"""
|
| 105 |
+
inputs = vision_processor(images=query_image, return_tensors="pt").to(device) # Move image inputs to device
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
outputs = vision_model(**inputs)
|
| 108 |
+
image_embedding_np = outputs[0].mean(dim=1)[0].cpu().numpy()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
query_embedding_np = image_embedding_np[np.newaxis, :]
|
| 112 |
+
faiss.normalize_L2(query_embedding_np)
|
| 113 |
+
|
| 114 |
+
# Search the FAISS index
|
| 115 |
+
distances, indices = image_index.search(query_embedding_np, 100)
|
| 116 |
+
|
| 117 |
+
# Get the top k items using the indices and the mapping
|
| 118 |
+
unique_texts = set()
|
| 119 |
+
results = []
|
| 120 |
+
for idx in indices[0]:
|
| 121 |
+
text = idx_item_mapping[idx]
|
| 122 |
+
if text not in unique_texts:
|
| 123 |
+
unique_texts.add(text)
|
| 124 |
+
results.append(text)
|
| 125 |
+
if len(results) == k:
|
| 126 |
+
break
|
| 127 |
+
|
| 128 |
+
return results
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def rag_pipeline(question, image=None):
|
| 132 |
+
"""
|
| 133 |
+
Runs the RAG pipeline with the given question and optional image.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
question: The text question.
|
| 137 |
+
image: Optional image input.
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
The generated answer from the language model.
|
| 141 |
+
"""
|
| 142 |
+
retrieved_items = []
|
| 143 |
+
if image is not None:
|
| 144 |
+
retrieved_items.extend(search_by_image(image))
|
| 145 |
+
retrieved_items.extend(search_by_text(question))
|
| 146 |
+
|
| 147 |
+
TEMPLATE = "{context}\nYou: {prompt}\nPersianMind: "
|
| 148 |
+
CONTEXT = '\n'.join(retrieved_items)
|
| 149 |
+
PROMPT = '\n'.join([
|
| 150 |
+
question,
|
| 151 |
+
'به این سوال به فارسی جواب بده.'
|
| 152 |
+
])
|
| 153 |
+
|
| 154 |
+
model_input = TEMPLATE.format(context=CONTEXT, prompt=PROMPT)
|
| 155 |
+
input_tokens = tokenizer(model_input, return_tensors="pt")
|
| 156 |
+
input_tokens = input_tokens.to(device)
|
| 157 |
+
generate_ids = model.generate(**input_tokens, max_new_tokens=200, do_sample=False, repetition_penalty=1.1)
|
| 158 |
+
model_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 159 |
+
|
| 160 |
+
return model_output[len(model_input):]
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
iface = gr.Interface(
|
| 164 |
+
fn=rag_pipeline,
|
| 165 |
+
inputs=[
|
| 166 |
+
gr.Textbox(label="Your Question"),
|
| 167 |
+
gr.Image(type="pil", label="Optional Image")
|
| 168 |
+
],
|
| 169 |
+
outputs=gr.Textbox(label="Answer"),
|
| 170 |
+
title="Tourist Attraction RAG Pipeline",
|
| 171 |
+
description="Ask a question about tourist attractions and optionally provide an image."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
iface.launch(debug=True)
|
idx_item_mapping.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f91dd8e55ba36208407b204b38725beb034febc212dbf4eb40c0bbbc6e31e53
|
| 3 |
+
size 1486498
|
image.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d469ba218d61ae40b215f2074b73c66dcbc1e6380f5a416a661be12ced229470
|
| 3 |
+
size 6703149
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
faiss-cpu
|
| 2 |
+
gradio
|
| 3 |
+
numpy
|
| 4 |
+
torch
|
| 5 |
+
pillow
|
| 6 |
+
sentence_transformers
|
| 7 |
+
transformers
|
| 8 |
+
datasets
|
| 9 |
+
hazm
|
| 10 |
+
tqdm
|
| 11 |
+
bitsandbytes
|
| 12 |
+
accelerate
|
| 13 |
+
sentencepiece
|
text.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8519dad63618a4cab940e95b55639196220236f2de36a6fec8aeb1bca385660
|
| 3 |
+
size 6703149
|