Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
import matplotlib | |
import cv2 | |
eps = 0.01 | |
def smart_resize(x, s): | |
Ht, Wt = s | |
if x.ndim == 2: | |
Ho, Wo = x.shape | |
Co = 1 | |
else: | |
Ho, Wo, Co = x.shape | |
if Co == 3 or Co == 1: | |
k = float(Ht + Wt) / float(Ho + Wo) | |
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) | |
else: | |
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2) | |
def smart_resize_k(x, fx, fy): | |
if x.ndim == 2: | |
Ho, Wo = x.shape | |
Co = 1 | |
else: | |
Ho, Wo, Co = x.shape | |
Ht, Wt = Ho * fy, Wo * fx | |
if Co == 3 or Co == 1: | |
k = float(Ht + Wt) / float(Ho + Wo) | |
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) | |
else: | |
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2) | |
def padRightDownCorner(img, stride, padValue): | |
h = img.shape[0] | |
w = img.shape[1] | |
pad = 4 * [None] | |
pad[0] = 0 # up | |
pad[1] = 0 # left | |
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down | |
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right | |
img_padded = img | |
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) | |
img_padded = np.concatenate((pad_up, img_padded), axis=0) | |
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) | |
img_padded = np.concatenate((pad_left, img_padded), axis=1) | |
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) | |
img_padded = np.concatenate((img_padded, pad_down), axis=0) | |
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) | |
img_padded = np.concatenate((img_padded, pad_right), axis=1) | |
return img_padded, pad | |
def transfer(model, model_weights): | |
transfered_model_weights = {} | |
for weights_name in model.state_dict().keys(): | |
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])] | |
return transfered_model_weights | |
def draw_bodypose(canvas, candidate, subset): | |
H, W, C = canvas.shape | |
candidate = np.array(candidate) | |
subset = np.array(subset) | |
stickwidth = 4 | |
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \ | |
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \ | |
[1, 16], [16, 18], [3, 17], [6, 18]] | |
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ | |
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ | |
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] | |
for i in range(17): | |
for n in range(len(subset)): | |
index = subset[n][np.array(limbSeq[i]) - 1] | |
if -1 in index: | |
continue | |
Y = candidate[index.astype(int), 0] * float(W) | |
X = candidate[index.astype(int), 1] * float(H) | |
mX = np.mean(X) | |
mY = np.mean(Y) | |
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) | |
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) | |
cv2.fillConvexPoly(canvas, polygon, colors[i]) | |
canvas = (canvas * 0.6).astype(np.uint8) | |
for i in range(18): | |
for n in range(len(subset)): | |
index = int(subset[n][i]) | |
if index == -1: | |
continue | |
x, y = candidate[index][0:2] | |
x = int(x * W) | |
y = int(y * H) | |
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) | |
return canvas | |
def draw_handpose(canvas, all_hand_peaks): | |
H, W, C = canvas.shape | |
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \ | |
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]] | |
for peaks in all_hand_peaks: | |
peaks = np.array(peaks) | |
for ie, e in enumerate(edges): | |
x1, y1 = peaks[e[0]] | |
x2, y2 = peaks[e[1]] | |
x1 = int(x1 * W) | |
y1 = int(y1 * H) | |
x2 = int(x2 * W) | |
y2 = int(y2 * H) | |
if x1 > eps and y1 > eps and x2 > eps and y2 > eps: | |
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2) | |
for i, keyponit in enumerate(peaks): | |
x, y = keyponit | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) | |
return canvas | |
def draw_facepose(canvas, all_lmks): | |
H, W, C = canvas.shape | |
for lmks in all_lmks: | |
lmks = np.array(lmks) | |
for lmk in lmks: | |
x, y = lmk | |
x = int(x * W) | |
y = int(y * H) | |
if x > eps and y > eps: | |
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) | |
return canvas | |
# detect hand according to body pose keypoints | |
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp | |
def handDetect(candidate, subset, oriImg): | |
# right hand: wrist 4, elbow 3, shoulder 2 | |
# left hand: wrist 7, elbow 6, shoulder 5 | |
ratioWristElbow = 0.33 | |
detect_result = [] | |
image_height, image_width = oriImg.shape[0:2] | |
for person in subset.astype(int): | |
# if any of three not detected | |
has_left = np.sum(person[[5, 6, 7]] == -1) == 0 | |
has_right = np.sum(person[[2, 3, 4]] == -1) == 0 | |
if not (has_left or has_right): | |
continue | |
hands = [] | |
#left hand | |
if has_left: | |
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] | |
x1, y1 = candidate[left_shoulder_index][:2] | |
x2, y2 = candidate[left_elbow_index][:2] | |
x3, y3 = candidate[left_wrist_index][:2] | |
hands.append([x1, y1, x2, y2, x3, y3, True]) | |
# right hand | |
if has_right: | |
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] | |
x1, y1 = candidate[right_shoulder_index][:2] | |
x2, y2 = candidate[right_elbow_index][:2] | |
x3, y3 = candidate[right_wrist_index][:2] | |
hands.append([x1, y1, x2, y2, x3, y3, False]) | |
for x1, y1, x2, y2, x3, y3, is_left in hands: | |
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox | |
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); | |
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); | |
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); | |
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); | |
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); | |
x = x3 + ratioWristElbow * (x3 - x2) | |
y = y3 + ratioWristElbow * (y3 - y2) | |
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) | |
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) | |
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) | |
# x-y refers to the center --> offset to topLeft point | |
# handRectangle.x -= handRectangle.width / 2.f; | |
# handRectangle.y -= handRectangle.height / 2.f; | |
x -= width / 2 | |
y -= width / 2 # width = height | |
# overflow the image | |
if x < 0: x = 0 | |
if y < 0: y = 0 | |
width1 = width | |
width2 = width | |
if x + width > image_width: width1 = image_width - x | |
if y + width > image_height: width2 = image_height - y | |
width = min(width1, width2) | |
# the max hand box value is 20 pixels | |
if width >= 20: | |
detect_result.append([int(x), int(y), int(width), is_left]) | |
''' | |
return value: [[x, y, w, True if left hand else False]]. | |
width=height since the network require squared input. | |
x, y is the coordinate of top left | |
''' | |
return detect_result | |
# Written by Lvmin | |
def faceDetect(candidate, subset, oriImg): | |
# left right eye ear 14 15 16 17 | |
detect_result = [] | |
image_height, image_width = oriImg.shape[0:2] | |
for person in subset.astype(int): | |
has_head = person[0] > -1 | |
if not has_head: | |
continue | |
has_left_eye = person[14] > -1 | |
has_right_eye = person[15] > -1 | |
has_left_ear = person[16] > -1 | |
has_right_ear = person[17] > -1 | |
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): | |
continue | |
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] | |
width = 0.0 | |
x0, y0 = candidate[head][:2] | |
if has_left_eye: | |
x1, y1 = candidate[left_eye][:2] | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 3.0) | |
if has_right_eye: | |
x1, y1 = candidate[right_eye][:2] | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 3.0) | |
if has_left_ear: | |
x1, y1 = candidate[left_ear][:2] | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 1.5) | |
if has_right_ear: | |
x1, y1 = candidate[right_ear][:2] | |
d = max(abs(x0 - x1), abs(y0 - y1)) | |
width = max(width, d * 1.5) | |
x, y = x0, y0 | |
x -= width | |
y -= width | |
if x < 0: | |
x = 0 | |
if y < 0: | |
y = 0 | |
width1 = width * 2 | |
width2 = width * 2 | |
if x + width > image_width: | |
width1 = image_width - x | |
if y + width > image_height: | |
width2 = image_height - y | |
width = min(width1, width2) | |
if width >= 20: | |
detect_result.append([int(x), int(y), int(width)]) | |
return detect_result | |
# get max index of 2d array | |
def npmax(array): | |
arrayindex = array.argmax(1) | |
arrayvalue = array.max(1) | |
i = arrayvalue.argmax() | |
j = arrayindex[i] | |
return i, j | |