Spaces:
Configuration error
Configuration error
| import os | |
| from typing import List | |
| import torch | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.pipelines.controlnet import MultiControlNetModel | |
| from PIL import Image | |
| from safetensors import safe_open | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| from .utils import is_torch2_available, get_generator | |
| USE_DAFAULT_ATTN = False # should be True for visualization_attnmap | |
| if is_torch2_available() and (not USE_DAFAULT_ATTN): | |
| from .attention_processor import ( | |
| AttnProcessor2_0 as AttnProcessor, | |
| ) | |
| from .attention_processor import ( | |
| IPAttnProcessor2_0 as IPAttnProcessor, | |
| ) | |
| else: | |
| from .attention_processor import AttnProcessor, IPAttnProcessor | |
| from .resampler import PerceiverAttention, FeedForward | |
| class FacePerceiverResampler(torch.nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim=768, | |
| depth=4, | |
| dim_head=64, | |
| heads=16, | |
| embedding_dim=1280, | |
| output_dim=768, | |
| ff_mult=4, | |
| ): | |
| super().__init__() | |
| self.proj_in = torch.nn.Linear(embedding_dim, dim) | |
| self.proj_out = torch.nn.Linear(dim, output_dim) | |
| self.norm_out = torch.nn.LayerNorm(output_dim) | |
| self.layers = torch.nn.ModuleList([]) | |
| for _ in range(depth): | |
| self.layers.append( | |
| torch.nn.ModuleList( | |
| [ | |
| PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
| FeedForward(dim=dim, mult=ff_mult), | |
| ] | |
| ) | |
| ) | |
| def forward(self, latents, x): | |
| x = self.proj_in(x) | |
| for attn, ff in self.layers: | |
| latents = attn(x, latents) + latents | |
| latents = ff(latents) + latents | |
| latents = self.proj_out(latents) | |
| return self.norm_out(latents) | |
| class MLPProjModel(torch.nn.Module): | |
| def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): | |
| super().__init__() | |
| self.cross_attention_dim = cross_attention_dim | |
| self.num_tokens = num_tokens | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
| ) | |
| self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
| def forward(self, id_embeds): | |
| x = self.proj(id_embeds) | |
| x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
| x = self.norm(x) | |
| return x | |
| class ProjPlusModel(torch.nn.Module): | |
| def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4): | |
| super().__init__() | |
| self.cross_attention_dim = cross_attention_dim | |
| self.num_tokens = num_tokens | |
| self.proj = torch.nn.Sequential( | |
| torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), | |
| ) | |
| self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
| self.perceiver_resampler = FacePerceiverResampler( | |
| dim=cross_attention_dim, | |
| depth=4, | |
| dim_head=64, | |
| heads=cross_attention_dim // 64, | |
| embedding_dim=clip_embeddings_dim, | |
| output_dim=cross_attention_dim, | |
| ff_mult=4, | |
| ) | |
| def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0): | |
| x = self.proj(id_embeds) | |
| x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
| x = self.norm(x) | |
| out = self.perceiver_resampler(x, clip_embeds) | |
| if shortcut: | |
| out = x + scale * out | |
| return out | |
| class IPAdapterFaceID: | |
| def __init__(self, sd_pipe, ip_ckpt, device, num_tokens=4, n_cond=1, torch_dtype=torch.float16): | |
| self.device = device | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.n_cond = n_cond | |
| self.torch_dtype = torch_dtype | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = MLPProjModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| id_embeddings_dim=512, | |
| num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| return image_proj_model | |
| def set_ip_adapter(self): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens*self.n_cond, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| unet.set_attn_processor(attn_procs) | |
| def load_ip_adapter(self): | |
| if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
| def get_image_embeds(self, faceid_embeds): | |
| multi_face = False | |
| if faceid_embeds.dim() == 3: | |
| multi_face = True | |
| b, n, c = faceid_embeds.shape | |
| faceid_embeds = faceid_embeds.reshape(b*n, c) | |
| faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
| image_prompt_embeds = self.image_proj_model(faceid_embeds) | |
| uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds)) | |
| if multi_face: | |
| c = image_prompt_embeds.size(-1) | |
| image_prompt_embeds = image_prompt_embeds.reshape(b, -1, c) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.reshape(b, -1, c) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, IPAttnProcessor): | |
| attn_processor.scale = scale | |
| def generate( | |
| self, | |
| faceid_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = faceid_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterFaceIDPlus: | |
| def __init__(self, sd_pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch.float16): | |
| self.device = device | |
| self.image_encoder_path = image_encoder_path | |
| self.ip_ckpt = ip_ckpt | |
| self.num_tokens = num_tokens | |
| self.torch_dtype = torch_dtype | |
| self.pipe = sd_pipe.to(self.device) | |
| self.set_ip_adapter() | |
| # load image encoder | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
| self.device, dtype=self.torch_dtype | |
| ) | |
| self.clip_image_processor = CLIPImageProcessor() | |
| # image proj model | |
| self.image_proj_model = self.init_proj() | |
| self.load_ip_adapter() | |
| def init_proj(self): | |
| image_proj_model = ProjPlusModel( | |
| cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
| id_embeddings_dim=512, | |
| clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
| num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| return image_proj_model | |
| def set_ip_adapter(self): | |
| unet = self.pipe.unet | |
| attn_procs = {} | |
| for name in unet.attn_processors.keys(): | |
| cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
| if name.startswith("mid_block"): | |
| hidden_size = unet.config.block_out_channels[-1] | |
| elif name.startswith("up_blocks"): | |
| block_id = int(name[len("up_blocks.")]) | |
| hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
| elif name.startswith("down_blocks"): | |
| block_id = int(name[len("down_blocks.")]) | |
| hidden_size = unet.config.block_out_channels[block_id] | |
| if cross_attention_dim is None: | |
| attn_procs[name] = AttnProcessor() | |
| else: | |
| attn_procs[name] = IPAttnProcessor( | |
| hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens, | |
| ).to(self.device, dtype=self.torch_dtype) | |
| unet.set_attn_processor(attn_procs) | |
| def load_ip_adapter(self): | |
| if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
| state_dict = {"image_proj": {}, "ip_adapter": {}} | |
| with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| if key.startswith("image_proj."): | |
| state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
| elif key.startswith("ip_adapter."): | |
| state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
| else: | |
| state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
| self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
| ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
| ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
| def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut): | |
| if isinstance(face_image, Image.Image): | |
| pil_image = [face_image] | |
| clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values | |
| clip_image = clip_image.to(self.device, dtype=self.torch_dtype) | |
| clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
| uncond_clip_image_embeds = self.image_encoder( | |
| torch.zeros_like(clip_image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
| image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
| return image_prompt_embeds, uncond_image_prompt_embeds | |
| def set_scale(self, scale): | |
| for attn_processor in self.pipe.unet.attn_processors.values(): | |
| if isinstance(attn_processor, LoRAIPAttnProcessor): | |
| attn_processor.scale = scale | |
| def generate( | |
| self, | |
| face_image=None, | |
| faceid_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| s_scale=1.0, | |
| shortcut=False, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = faceid_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
| prompt, | |
| device=self.device, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterFaceIDXL(IPAdapterFaceID): | |
| """SDXL""" | |
| def generate( | |
| self, | |
| faceid_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| num_inference_steps=30, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = faceid_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| **kwargs, | |
| ).images | |
| return images | |
| class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus): | |
| """SDXL""" | |
| def generate( | |
| self, | |
| face_image=None, | |
| faceid_embeds=None, | |
| prompt=None, | |
| negative_prompt=None, | |
| scale=1.0, | |
| num_samples=4, | |
| seed=None, | |
| guidance_scale=7.5, | |
| num_inference_steps=30, | |
| s_scale=1.0, | |
| shortcut=True, | |
| **kwargs, | |
| ): | |
| self.set_scale(scale) | |
| num_prompts = faceid_embeds.size(0) | |
| if prompt is None: | |
| prompt = "best quality, high quality" | |
| if negative_prompt is None: | |
| negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
| if not isinstance(prompt, List): | |
| prompt = [prompt] * num_prompts | |
| if not isinstance(negative_prompt, List): | |
| negative_prompt = [negative_prompt] * num_prompts | |
| image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) | |
| bs_embed, seq_len, _ = image_prompt_embeds.shape | |
| image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
| image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
| uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
| with torch.inference_mode(): | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.pipe.encode_prompt( | |
| prompt, | |
| num_images_per_prompt=num_samples, | |
| do_classifier_free_guidance=True, | |
| negative_prompt=negative_prompt, | |
| ) | |
| prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
| negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
| generator = get_generator(seed, self.device) | |
| images = self.pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale, | |
| **kwargs, | |
| ).images | |
| return images | |