Spaces:
Running
Running
修复 1012 模型的股票和指数预测逻辑,优化数据提取方式,修正 impact_2_day 错误
Browse files- blkeras.py +37 -37
blkeras.py
CHANGED
@@ -218,40 +218,52 @@ def predict(text: str, stock_codes: list):
|
|
218 |
index_ndx_predictions = predictions[3].tolist()
|
219 |
stock_predictions = predictions[4].tolist()
|
220 |
|
221 |
-
print(f"Original predictions: {predictions}")
|
222 |
-
|
223 |
# 打印预测结果,便于调试
|
224 |
-
print("Index INX Predictions:", index_inx_predictions)
|
225 |
-
print("Index DJ Predictions:", index_dj_predictions)
|
226 |
-
print("Index IXIC Predictions:", index_ixic_predictions)
|
227 |
-
print("Index NDX Predictions:", index_ndx_predictions)
|
228 |
-
print("Stock Predictions:", stock_predictions)
|
|
|
229 |
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
# 获取 index_feature 中最后一天的第一个值
|
234 |
-
last_index_inx_value = previous_stock_inx_index_history[
|
235 |
-
last_index_dj_value = previous_stock_dj_index_history[
|
236 |
-
last_index_ixic_value = previous_stock_ixic_index_history[
|
237 |
-
last_index_ndx_value = previous_stock_ndx_index_history[
|
238 |
|
239 |
# 提取 Index Predictions 中每一天的第一个值
|
240 |
-
index_inx_day_1 = index_inx_predictions[0][0]
|
241 |
-
index_inx_day_2 = index_inx_predictions[
|
242 |
-
index_inx_day_3 = index_inx_predictions[
|
243 |
|
244 |
-
index_dj_day_1 = index_dj_predictions[0][0]
|
245 |
-
index_dj_day_2 = index_dj_predictions[
|
246 |
-
index_dj_day_3 = index_dj_predictions[
|
247 |
|
248 |
-
index_ixic_day_1 = index_ixic_predictions[0][0]
|
249 |
-
index_ixic_day_2 = index_ixic_predictions[
|
250 |
-
index_ixic_day_3 = index_ixic_predictions[
|
251 |
|
252 |
-
index_ndx_day_1 = index_ndx_predictions[0][0]
|
253 |
-
index_ndx_day_2 = index_ndx_predictions[
|
254 |
-
index_ndx_day_3 = index_ndx_predictions[
|
255 |
|
256 |
# 计算 impact_1_day, impact_2_day, impact_3_day
|
257 |
impact_inx_1_day = (index_inx_day_1 - last_index_inx_value) / last_index_inx_value
|
@@ -296,18 +308,6 @@ def predict(text: str, stock_codes: list):
|
|
296 |
|
297 |
|
298 |
|
299 |
-
# 针对 926 模型的修复
|
300 |
-
stock_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), stock_predictions[0], previous_stock_history[0][-1][0])
|
301 |
-
index_inx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_inx_predictions[0], last_index_inx_value)
|
302 |
-
index_dj_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_dj_predictions[0], last_index_dj_value)
|
303 |
-
index_ixic_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ixic_predictions[0], last_index_ixic_value)
|
304 |
-
index_ndx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ndx_predictions[0], last_index_ndx_value)
|
305 |
-
|
306 |
-
print("Stock Predictions after fix:", stock_predictions)
|
307 |
-
print("Index INX Predictions after fix:", index_inx_predictions)
|
308 |
-
print("Index DJ Predictions after fix:", index_dj_predictions)
|
309 |
-
print("Index IXIC Predictions after fix:", index_ixic_predictions)
|
310 |
-
print("Index NDX Predictions after fix:", index_ndx_predictions)
|
311 |
|
312 |
# 扩展股票预测数据到分钟级别
|
313 |
stock_predictions = extend_stock_days_to_mins(stock_predictions)
|
@@ -323,7 +323,7 @@ def predict(text: str, stock_codes: list):
|
|
323 |
"news_title": input_text,
|
324 |
"ai_prediction_score": float(X_sentiment[0][0]), # 假设第一个预测值是 AI 预测得分
|
325 |
"impact_inx_1_day": impact_inx_1_day_str, # 计算并格式化 impact_1_day
|
326 |
-
"
|
327 |
"impact_inx_3_day": impact_inx_3_day_str,
|
328 |
"impact_dj_1_day": impact_dj_1_day_str, # 计算并格式化 impact_1_day
|
329 |
"impact_dj_2_day": impact_dj_2_day_str, # 计算并格式化 impact_2_day
|
@@ -351,7 +351,7 @@ def predict(text: str, stock_codes: list):
|
|
351 |
if len(prediction_cache) > CACHE_MAX_SIZE:
|
352 |
prediction_cache.popitem(last=False)
|
353 |
|
354 |
-
print(f"predict() result: {result}")
|
355 |
|
356 |
# 返回预测结果
|
357 |
return result
|
|
|
218 |
index_ndx_predictions = predictions[3].tolist()
|
219 |
stock_predictions = predictions[4].tolist()
|
220 |
|
|
|
|
|
221 |
# 打印预测结果,便于调试
|
222 |
+
#print("Index INX Predictions:", index_inx_predictions)
|
223 |
+
#print("Index DJ Predictions:", index_dj_predictions)
|
224 |
+
#print("Index IXIC Predictions:", index_ixic_predictions)
|
225 |
+
#print("Index NDX Predictions:", index_ndx_predictions)
|
226 |
+
#print("Stock Predictions:", stock_predictions)
|
227 |
+
|
228 |
|
229 |
|
230 |
+
# 针对 1012 模型的修复
|
231 |
+
stock_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), stock_predictions[0], previous_stock_history[0][-1][0])
|
232 |
+
index_inx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_inx_predictions[0], last_index_inx_value)
|
233 |
+
index_dj_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_dj_predictions[0], last_index_dj_value)
|
234 |
+
index_ixic_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ixic_predictions[0], last_index_ixic_value)
|
235 |
+
index_ndx_predictions = stock_fix_for_1012_model(float(X_sentiment[0][0]), index_ndx_predictions[0], last_index_ndx_value)
|
236 |
+
|
237 |
+
#print("Stock Predictions after fix:", stock_predictions)
|
238 |
+
#print("Index INX Predictions after fix:", index_inx_predictions)
|
239 |
+
#print("Index DJ Predictions after fix:", index_dj_predictions)
|
240 |
+
#print("Index IXIC Predictions after fix:", index_ixic_predictions)
|
241 |
+
#print("Index NDX Predictions after fix:", index_ndx_predictions)
|
242 |
+
|
243 |
|
244 |
|
245 |
# 获取 index_feature 中最后一天的第一个值
|
246 |
+
last_index_inx_value = previous_stock_inx_index_history[-1][0]
|
247 |
+
last_index_dj_value = previous_stock_dj_index_history[-1][0]
|
248 |
+
last_index_ixic_value = previous_stock_ixic_index_history[-1][0]
|
249 |
+
last_index_ndx_value = previous_stock_ndx_index_history[-1][0]
|
250 |
|
251 |
# 提取 Index Predictions 中每一天的第一个值
|
252 |
+
index_inx_day_1 = index_inx_predictions[0][0]
|
253 |
+
index_inx_day_2 = index_inx_predictions[1][0]
|
254 |
+
index_inx_day_3 = index_inx_predictions[2][0]
|
255 |
|
256 |
+
index_dj_day_1 = index_dj_predictions[0][0]
|
257 |
+
index_dj_day_2 = index_dj_predictions[1][0]
|
258 |
+
index_dj_day_3 = index_dj_predictions[2][0]
|
259 |
|
260 |
+
index_ixic_day_1 = index_ixic_predictions[0][0]
|
261 |
+
index_ixic_day_2 = index_ixic_predictions[1][0]
|
262 |
+
index_ixic_day_3 = index_ixic_predictions[2][0]
|
263 |
|
264 |
+
index_ndx_day_1 = index_ndx_predictions[0][0]
|
265 |
+
index_ndx_day_2 = index_ndx_predictions[1][0]
|
266 |
+
index_ndx_day_3 = index_ndx_predictions[2][0]
|
267 |
|
268 |
# 计算 impact_1_day, impact_2_day, impact_3_day
|
269 |
impact_inx_1_day = (index_inx_day_1 - last_index_inx_value) / last_index_inx_value
|
|
|
308 |
|
309 |
|
310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
# 扩展股票预测数据到分钟级别
|
313 |
stock_predictions = extend_stock_days_to_mins(stock_predictions)
|
|
|
323 |
"news_title": input_text,
|
324 |
"ai_prediction_score": float(X_sentiment[0][0]), # 假设第一个预测值是 AI 预测得分
|
325 |
"impact_inx_1_day": impact_inx_1_day_str, # 计算并格式化 impact_1_day
|
326 |
+
"impact_inx_2_day": impact_inx_2_day_str, # 计算并格式化 impact_2_day
|
327 |
"impact_inx_3_day": impact_inx_3_day_str,
|
328 |
"impact_dj_1_day": impact_dj_1_day_str, # 计算并格式化 impact_1_day
|
329 |
"impact_dj_2_day": impact_dj_2_day_str, # 计算并格式化 impact_2_day
|
|
|
351 |
if len(prediction_cache) > CACHE_MAX_SIZE:
|
352 |
prediction_cache.popitem(last=False)
|
353 |
|
354 |
+
#print(f"predict() result: {result}")
|
355 |
|
356 |
# 返回预测结果
|
357 |
return result
|