|
import os |
|
import glob |
|
import argparse |
|
import logging |
|
import json |
|
import subprocess |
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
import torch |
|
import torchaudio |
|
import librosa |
|
from .text import cleaned_text_to_sequence, get_bert |
|
from .text.cleaner import clean_text |
|
from . import commons |
|
|
|
MATPLOTLIB_FLAG = False |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id) |
|
|
|
if hps.data.add_blank: |
|
phone = commons.intersperse(phone, 0) |
|
tone = commons.intersperse(tone, 0) |
|
language = commons.intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
|
|
if getattr(hps.data, "disable_bert", False): |
|
bert = torch.zeros(1024, len(phone)) |
|
ja_bert = torch.zeros(768, len(phone)) |
|
else: |
|
bert = get_bert(norm_text, word2ph, language_str, device) |
|
del word2ph |
|
assert bert.shape[-1] == len(phone), phone |
|
|
|
if language_str == "ZH": |
|
bert = bert |
|
ja_bert = torch.zeros(768, len(phone)) |
|
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']: |
|
ja_bert = bert |
|
bert = torch.zeros(1024, len(phone)) |
|
else: |
|
raise NotImplementedError() |
|
|
|
assert bert.shape[-1] == len( |
|
phone |
|
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
|
|
phone = torch.LongTensor(phone) |
|
tone = torch.LongTensor(tone) |
|
language = torch.LongTensor(language) |
|
return bert, ja_bert, phone, tone, language |
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") |
|
iteration = checkpoint_dict["iteration"] |
|
learning_rate = checkpoint_dict["learning_rate"] |
|
if ( |
|
optimizer is not None |
|
and not skip_optimizer |
|
and checkpoint_dict["optimizer"] is not None |
|
): |
|
optimizer.load_state_dict(checkpoint_dict["optimizer"]) |
|
elif optimizer is None and not skip_optimizer: |
|
|
|
new_opt_dict = optimizer.state_dict() |
|
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"] |
|
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"] |
|
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params |
|
optimizer.load_state_dict(new_opt_dict) |
|
|
|
saved_state_dict = checkpoint_dict["model"] |
|
if hasattr(model, "module"): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
|
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
|
|
new_state_dict[k] = saved_state_dict[k] |
|
assert saved_state_dict[k].shape == v.shape, ( |
|
saved_state_dict[k].shape, |
|
v.shape, |
|
) |
|
except Exception as e: |
|
|
|
if "ja_bert_proj" in k: |
|
v = torch.zeros_like(v) |
|
logger.warn( |
|
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility" |
|
) |
|
else: |
|
logger.error(f"{k} is not in the checkpoint") |
|
|
|
new_state_dict[k] = v |
|
|
|
if hasattr(model, "module"): |
|
model.module.load_state_dict(new_state_dict, strict=False) |
|
else: |
|
model.load_state_dict(new_state_dict, strict=False) |
|
|
|
logger.info( |
|
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration) |
|
) |
|
|
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
logger.info( |
|
"Saving model and optimizer state at iteration {} to {}".format( |
|
iteration, checkpoint_path |
|
) |
|
) |
|
if hasattr(model, "module"): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save( |
|
{ |
|
"model": state_dict, |
|
"iteration": iteration, |
|
"optimizer": optimizer.state_dict(), |
|
"learning_rate": learning_rate, |
|
}, |
|
checkpoint_path, |
|
) |
|
|
|
|
|
def summarize( |
|
writer, |
|
global_step, |
|
scalars={}, |
|
histograms={}, |
|
images={}, |
|
audios={}, |
|
audio_sampling_rate=22050, |
|
): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats="HWC") |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
return x |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
|
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger("matplotlib") |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def plot_alignment_to_numpy(alignment, info=None): |
|
global MATPLOTLIB_FLAG |
|
if not MATPLOTLIB_FLAG: |
|
import matplotlib |
|
|
|
matplotlib.use("Agg") |
|
MATPLOTLIB_FLAG = True |
|
mpl_logger = logging.getLogger("matplotlib") |
|
mpl_logger.setLevel(logging.WARNING) |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(6, 4)) |
|
im = ax.imshow( |
|
alignment.transpose(), aspect="auto", origin="lower", interpolation="none" |
|
) |
|
fig.colorbar(im, ax=ax) |
|
xlabel = "Decoder timestep" |
|
if info is not None: |
|
xlabel += "\n\n" + info |
|
plt.xlabel(xlabel) |
|
plt.ylabel("Encoder timestep") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_wav_to_torch_new(full_path): |
|
audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True) |
|
audio_norm = audio_norm.mean(dim=0) |
|
return audio_norm, sampling_rate |
|
|
|
def load_wav_to_torch_librosa(full_path, sr): |
|
audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True) |
|
return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding="utf-8") as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(init=True): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-c", |
|
"--config", |
|
type=str, |
|
default="./configs/base.json", |
|
help="JSON file for configuration", |
|
) |
|
parser.add_argument('--local-rank', type=int, default=0) |
|
parser.add_argument("-m", "--model", type=str, required=True, help="Model name") |
|
parser.add_argument('--pretrain_G', type=str, default=None, |
|
help='pretrain model') |
|
parser.add_argument('--pretrain_D', type=str, default=None, |
|
help='pretrain model D') |
|
parser.add_argument('--pretrain_dur', type=str, default=None, |
|
help='pretrain model duration') |
|
|
|
args = parser.parse_args() |
|
model_dir = os.path.join("./logs", args.model) |
|
|
|
os.makedirs(model_dir, exist_ok=True) |
|
|
|
config_path = args.config |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
if init: |
|
with open(config_path, "r") as f: |
|
data = f.read() |
|
with open(config_save_path, "w") as f: |
|
f.write(data) |
|
else: |
|
with open(config_save_path, "r") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
hparams.pretrain_G = args.pretrain_G |
|
hparams.pretrain_D = args.pretrain_D |
|
hparams.pretrain_dur = args.pretrain_dur |
|
return hparams |
|
|
|
|
|
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True): |
|
"""Freeing up space by deleting saved ckpts |
|
|
|
Arguments: |
|
path_to_models -- Path to the model directory |
|
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth |
|
sort_by_time -- True -> chronologically delete ckpts |
|
False -> lexicographically delete ckpts |
|
""" |
|
import re |
|
|
|
ckpts_files = [ |
|
f |
|
for f in os.listdir(path_to_models) |
|
if os.path.isfile(os.path.join(path_to_models, f)) |
|
] |
|
|
|
def name_key(_f): |
|
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1)) |
|
|
|
def time_key(_f): |
|
return os.path.getmtime(os.path.join(path_to_models, _f)) |
|
|
|
sort_key = time_key if sort_by_time else name_key |
|
|
|
def x_sorted(_x): |
|
return sorted( |
|
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], |
|
key=sort_key, |
|
) |
|
|
|
to_del = [ |
|
os.path.join(path_to_models, fn) |
|
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep]) |
|
] |
|
|
|
def del_info(fn): |
|
return logger.info(f".. Free up space by deleting ckpt {fn}") |
|
|
|
def del_routine(x): |
|
return [os.remove(x), del_info(x)] |
|
|
|
[del_routine(fn) for fn in to_del] |
|
|
|
|
|
def get_hparams_from_dir(model_dir): |
|
config_save_path = os.path.join(model_dir, "config.json") |
|
with open(config_save_path, "r", encoding="utf-8") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
hparams.model_dir = model_dir |
|
return hparams |
|
|
|
|
|
def get_hparams_from_file(config_path): |
|
with open(config_path, "r", encoding="utf-8") as f: |
|
data = f.read() |
|
config = json.loads(data) |
|
|
|
hparams = HParams(**config) |
|
return hparams |
|
|
|
|
|
def check_git_hash(model_dir): |
|
source_dir = os.path.dirname(os.path.realpath(__file__)) |
|
if not os.path.exists(os.path.join(source_dir, ".git")): |
|
logger.warn( |
|
"{} is not a git repository, therefore hash value comparison will be ignored.".format( |
|
source_dir |
|
) |
|
) |
|
return |
|
|
|
cur_hash = subprocess.getoutput("git rev-parse HEAD") |
|
|
|
path = os.path.join(model_dir, "githash") |
|
if os.path.exists(path): |
|
saved_hash = open(path).read() |
|
if saved_hash != cur_hash: |
|
logger.warn( |
|
"git hash values are different. {}(saved) != {}(current)".format( |
|
saved_hash[:8], cur_hash[:8] |
|
) |
|
) |
|
else: |
|
open(path, "w").write(cur_hash) |
|
|
|
|
|
def get_logger(model_dir, filename="train.log"): |
|
global logger |
|
logger = logging.getLogger(os.path.basename(model_dir)) |
|
logger.setLevel(logging.DEBUG) |
|
|
|
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") |
|
if not os.path.exists(model_dir): |
|
os.makedirs(model_dir, exist_ok=True) |
|
h = logging.FileHandler(os.path.join(model_dir, filename)) |
|
h.setLevel(logging.DEBUG) |
|
h.setFormatter(formatter) |
|
logger.addHandler(h) |
|
return logger |
|
|
|
|
|
class HParams: |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|