Paramasivan Dorai commited on
Commit
b5beaa1
·
1 Parent(s): 8b0a38d

Update space

Browse files
Files changed (2) hide show
  1. app.py +43 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ import gradio as gr
4
+ from transformers import pipeline
5
+
6
+ # Load the summarization pipeline with your pre-trained model
7
+ pipe = pipeline("summarization", model="paramasivan27/t5small_for_email_summarization_enron")
8
+
9
+ # Function to summarize email
10
+ def summarize_email(email_body):
11
+ # Tokenize the input text
12
+ pipeline = pipe
13
+ input_tokens = pipeline.tokenizer(email_body, return_tensors='pt', truncation=False)
14
+ input_length = input_tokens['input_ids'].shape[1]
15
+
16
+ # Adjust max_length to be a certain percentage of the input length
17
+ adjusted_max_length = max(10, int(input_length * 0.6)) # Ensure a minimum length
18
+
19
+ # Generate summary with dynamic max_length
20
+ gen_kwargs = {
21
+ "length_penalty": 2.0,
22
+ "num_beams": 4,
23
+ "max_length": adjusted_max_length,
24
+ "min_length": 3
25
+ }
26
+
27
+ summary = pipeline(email_body, **gen_kwargs)[0]['summary_text']
28
+ return summary
29
+
30
+ # Create the Gradio interface
31
+ iface = gr.Interface(
32
+ fn=summarize_email,
33
+ inputs=gr.Textbox(lines=10, placeholder="Enter the email body here..."),
34
+ outputs="text",
35
+ title="Email Subject Line Generator",
36
+ description="Generate a subject line from an email body using GPT-2."
37
+ )
38
+
39
+ # Launch the interface
40
+ iface.launch()
41
+
42
+ if __name__ == "__main__":
43
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ transformers
3
+ torch
4
+ gradio