Mezei Dragos commited on
Commit
72e82be
·
1 Parent(s): cc22697

first commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pt filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43b4f3a85a9b4b8c4a7eae79f59747344f8824ca043f4585a2451d951b024e18
3
+ size 31314554
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+
5
+ from model import create_effnetb2_model
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+
9
+ class_names = ['pizza', 'steak', 'sushi']
10
+
11
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
12
+ num_classes=3
13
+ )
14
+
15
+ effnetb2.load_state_dict(
16
+ torch.load(
17
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pt",
18
+ map_location=torch.device('cpu'),
19
+ )
20
+ )
21
+
22
+ def predict(img) -> Tuple[Dict, float]:
23
+ start_time = timer()
24
+
25
+ img = effnetb2_transforms(img).unsqueeze(0)
26
+
27
+ effnetb2.eval()
28
+ with torch.inference_mode():
29
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
30
+
31
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
32
+
33
+ pred_time = round(timer() - start_time, 5)
34
+
35
+ return pred_labels_and_probs, pred_time
36
+
37
+ title = "FoodVision Mini"
38
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food."
39
+ article = "Created at pytorch tutorial."
40
+
41
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
42
+
43
+ demo = gr.Interface(fn=predict,
44
+ inputs=gr.Image(type="pil"),
45
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"),
46
+ gr.Number(label="Prediction time (s)")],
47
+ examples=example_list,
48
+ title=title,
49
+ description=description,
50
+ article=article)
51
+
52
+ demo.launch()
model.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+ def create_effnetb2_model(num_classes:int=3,
7
+ seed:int=42):
8
+ """Creates an efficientnetb2 feature extractor model and transforms.
9
+
10
+ Args:
11
+ num_classes (int, optional): number of classes in the classifier head.
12
+ Defaults to 3.
13
+ seed (int, optional): random seed value, default 42
14
+
15
+ Returns:
16
+ model (torch.nn.Module): EffNetB2 feature extractor model.
17
+ transforms (torchvision.transforms): EffNetB2 image transforms.
18
+ """
19
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
20
+ transforms = weights.transforms()
21
+ model = torchvision.models.efficientnet_b2(weights=weights)
22
+
23
+ for param in model.parameters():
24
+ param.requires_grad = False
25
+
26
+ torch.manual_seed(seed)
27
+ model.classifier = nn.Sequential(
28
+ nn.Dropout(p=0.3, inplace=True),
29
+ nn.Linear(in_features=1408, out_features=num_classes),
30
+ )
31
+
32
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch==2.4.1
2
+ torchvision==0.19.1
3
+ gradio==4.44.0
4
+ httpx==0.24.1