correct average values
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ INTRODUCTION_TEXT = """
|
|
12 |
|
13 |
results = [
|
14 |
{
|
15 |
-
'
|
16 |
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
|
17 |
'Model Size (Million Parameters)': 279,
|
18 |
'Embedding Dimensions': 768,
|
@@ -23,7 +23,7 @@ results = [
|
|
23 |
'Retrieval (3 datasets)': 5.57,
|
24 |
},
|
25 |
{
|
26 |
-
'
|
27 |
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
|
28 |
'Model Size (Million Parameters)': 561,
|
29 |
'Embedding Dimensions': 1024,
|
@@ -34,7 +34,7 @@ results = [
|
|
34 |
'Retrieval (3 datasets)': 11.80,
|
35 |
},
|
36 |
{
|
37 |
-
'
|
38 |
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
|
39 |
'Model Size (Million Parameters)': 106,
|
40 |
'Embedding Dimensions': 768,
|
@@ -45,7 +45,7 @@ results = [
|
|
45 |
'Retrieval (3 datasets)': 19.49,
|
46 |
},
|
47 |
{
|
48 |
-
'
|
49 |
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
|
50 |
'Model Size (Million Parameters)': 278,
|
51 |
'Embedding Dimensions': 768,
|
@@ -56,7 +56,7 @@ results = [
|
|
56 |
'Retrieval (3 datasets)': 56.31,
|
57 |
},
|
58 |
{
|
59 |
-
'
|
60 |
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
|
61 |
'Model Size (Million Parameters)': 278,
|
62 |
'Embedding Dimensions': 768,
|
@@ -67,7 +67,7 @@ results = [
|
|
67 |
'Retrieval (3 datasets)': 64.13,
|
68 |
},
|
69 |
{
|
70 |
-
'
|
71 |
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
|
72 |
'Model Size (Million Parameters)': 135,
|
73 |
'Embedding Dimensions': 512,
|
@@ -78,7 +78,7 @@ results = [
|
|
78 |
'Retrieval (3 datasets)': 42.72,
|
79 |
},
|
80 |
{
|
81 |
-
'
|
82 |
'Model Name': '[BGE-M3](https://huggingface.co/BAAI/bge-m3)',
|
83 |
'Model Size (Million Parameters)': 570,
|
84 |
'Embedding Dimensions': 1024,
|
@@ -89,7 +89,7 @@ results = [
|
|
89 |
'Retrieval (3 datasets)': 91.42,
|
90 |
},
|
91 |
{
|
92 |
-
'
|
93 |
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
|
94 |
'Model Size (Million Parameters)': 279,
|
95 |
'Embedding Dimensions': 768,
|
@@ -100,7 +100,7 @@ results = [
|
|
100 |
'Retrieval (3 datasets)': 54.17,
|
101 |
},
|
102 |
{
|
103 |
-
'
|
104 |
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
|
105 |
'Model Size (Million Parameters)': 106,
|
106 |
'Embedding Dimensions': 768,
|
@@ -111,7 +111,7 @@ results = [
|
|
111 |
'Retrieval (3 datasets)': 51.05,
|
112 |
},
|
113 |
{
|
114 |
-
'
|
115 |
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
|
116 |
'Model Size (Million Parameters)': 278,
|
117 |
'Embedding Dimensions': 768,
|
@@ -122,7 +122,7 @@ results = [
|
|
122 |
'Retrieval (3 datasets)': 66.05,
|
123 |
},
|
124 |
{
|
125 |
-
'
|
126 |
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
|
127 |
'Model Size (Million Parameters)': 279,
|
128 |
'Embedding Dimensions': 768,
|
@@ -133,7 +133,7 @@ results = [
|
|
133 |
'Retrieval (3 datasets)': 54.90,
|
134 |
},
|
135 |
{
|
136 |
-
'
|
137 |
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
|
138 |
'Model Size (Million Parameters)': 106,
|
139 |
'Embedding Dimensions': 768,
|
@@ -144,7 +144,7 @@ results = [
|
|
144 |
'Retrieval (3 datasets)': 63.83,
|
145 |
},
|
146 |
{
|
147 |
-
'
|
148 |
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
|
149 |
'Model Size (Million Parameters)': 278,
|
150 |
'Embedding Dimensions': 768,
|
@@ -155,7 +155,7 @@ results = [
|
|
155 |
'Retrieval (3 datasets)': 66.20,
|
156 |
},
|
157 |
{
|
158 |
-
'
|
159 |
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
|
160 |
'Model Size (Million Parameters)': 279,
|
161 |
'Embedding Dimensions': 768,
|
@@ -166,7 +166,7 @@ results = [
|
|
166 |
'Retrieval (3 datasets)': 65.02,
|
167 |
},
|
168 |
{
|
169 |
-
'
|
170 |
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
|
171 |
'Model Size (Million Parameters)': 106,
|
172 |
'Embedding Dimensions': 768,
|
@@ -177,7 +177,7 @@ results = [
|
|
177 |
'Retrieval (3 datasets)': 62.38,
|
178 |
},
|
179 |
{
|
180 |
-
'
|
181 |
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
|
182 |
'Model Size (Million Parameters)': 278,
|
183 |
'Embedding Dimensions': 768,
|
@@ -188,7 +188,7 @@ results = [
|
|
188 |
'Retrieval (3 datasets)': 67.94,
|
189 |
},
|
190 |
{
|
191 |
-
'
|
192 |
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
|
193 |
'Model Size (Million Parameters)': 279,
|
194 |
'Embedding Dimensions': 768,
|
@@ -199,7 +199,7 @@ results = [
|
|
199 |
'Retrieval (3 datasets)': 68.03,
|
200 |
},
|
201 |
{
|
202 |
-
'
|
203 |
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
|
204 |
'Model Size (Million Parameters)': 106,
|
205 |
'Embedding Dimensions': 768,
|
@@ -210,7 +210,7 @@ results = [
|
|
210 |
'Retrieval (3 datasets)': 67.66,
|
211 |
},
|
212 |
{
|
213 |
-
'
|
214 |
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
|
215 |
'Model Size (Million Parameters)': 278,
|
216 |
'Embedding Dimensions': 768,
|
@@ -221,7 +221,7 @@ results = [
|
|
221 |
'Retrieval (3 datasets)': 68.04,
|
222 |
},
|
223 |
{
|
224 |
-
'
|
225 |
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
|
226 |
'Model Size (Million Parameters)': 7110,
|
227 |
'Embedding Dimensions': 4096,
|
@@ -232,7 +232,7 @@ results = [
|
|
232 |
'Retrieval (3 datasets)': 86.80,
|
233 |
},
|
234 |
{
|
235 |
-
'
|
236 |
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
|
237 |
'Model Size (Million Parameters)': 7610,
|
238 |
'Embedding Dimensions': 3584,
|
@@ -243,7 +243,7 @@ results = [
|
|
243 |
'Retrieval (3 datasets)': 38.31,
|
244 |
},
|
245 |
{
|
246 |
-
'
|
247 |
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
|
248 |
'Model Size (Million Parameters)': 7240,
|
249 |
'Embedding Dimensions': 4096,
|
@@ -254,7 +254,7 @@ results = [
|
|
254 |
'Retrieval (3 datasets)': 22.79,
|
255 |
},
|
256 |
{
|
257 |
-
'
|
258 |
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
|
259 |
'Model Size (Million Parameters)': 8030,
|
260 |
'Embedding Dimensions': 4096,
|
@@ -265,7 +265,7 @@ results = [
|
|
265 |
'Retrieval (3 datasets)': 47.93,
|
266 |
},
|
267 |
{
|
268 |
-
'
|
269 |
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
|
270 |
'Model Size (Million Parameters)': 8030,
|
271 |
'Embedding Dimensions': 4096,
|
@@ -276,7 +276,7 @@ results = [
|
|
276 |
'Retrieval (3 datasets)': 50.38,
|
277 |
},
|
278 |
{
|
279 |
-
'
|
280 |
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
|
281 |
'Model Size (Million Parameters)': 8030,
|
282 |
'Embedding Dimensions': 4096,
|
@@ -287,7 +287,7 @@ results = [
|
|
287 |
'Retrieval (3 datasets)': 43.64,
|
288 |
},
|
289 |
{
|
290 |
-
'
|
291 |
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
|
292 |
'Model Size (Million Parameters)': 8030,
|
293 |
'Embedding Dimensions': 4096,
|
@@ -298,7 +298,7 @@ results = [
|
|
298 |
'Retrieval (3 datasets)': 43.63,
|
299 |
},
|
300 |
{
|
301 |
-
'
|
302 |
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
|
303 |
'Model Size (Million Parameters)': 8030,
|
304 |
'Embedding Dimensions': 4096,
|
@@ -309,7 +309,7 @@ results = [
|
|
309 |
'Retrieval (3 datasets)': 52.65,
|
310 |
},
|
311 |
{
|
312 |
-
'
|
313 |
'Model Name': 'Cohere-embed-multilingual-v2.0',
|
314 |
'Model Size (Million Parameters)': "N/A",
|
315 |
'Embedding Dimensions': 768,
|
@@ -320,7 +320,7 @@ results = [
|
|
320 |
'Retrieval (3 datasets)': 85.23,
|
321 |
},
|
322 |
{
|
323 |
-
'
|
324 |
'Model Name': 'Cohere-embed-multilingual-v3.0',
|
325 |
'Model Size (Million Parameters)': "N/A",
|
326 |
'Embedding Dimensions': 1024,
|
@@ -331,7 +331,7 @@ results = [
|
|
331 |
'Retrieval (3 datasets)': 91.43,
|
332 |
},
|
333 |
{
|
334 |
-
'
|
335 |
'Model Name': 'Openai-text-embedding-3-large',
|
336 |
'Model Size (Million Parameters)': "N/A",
|
337 |
'Embedding Dimensions': 3072,
|
@@ -343,6 +343,16 @@ results = [
|
|
343 |
},
|
344 |
]
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
# Sort by average
|
347 |
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
|
348 |
|
|
|
12 |
|
13 |
results = [
|
14 |
{
|
15 |
+
'Type': 'π’',
|
16 |
'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
|
17 |
'Model Size (Million Parameters)': 279,
|
18 |
'Embedding Dimensions': 768,
|
|
|
23 |
'Retrieval (3 datasets)': 5.57,
|
24 |
},
|
25 |
{
|
26 |
+
'Type': 'π’',
|
27 |
'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
|
28 |
'Model Size (Million Parameters)': 561,
|
29 |
'Embedding Dimensions': 1024,
|
|
|
34 |
'Retrieval (3 datasets)': 11.80,
|
35 |
},
|
36 |
{
|
37 |
+
'Type': 'π’',
|
38 |
'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
|
39 |
'Model Size (Million Parameters)': 106,
|
40 |
'Embedding Dimensions': 768,
|
|
|
45 |
'Retrieval (3 datasets)': 19.49,
|
46 |
},
|
47 |
{
|
48 |
+
'Type': 'π’',
|
49 |
'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
|
50 |
'Model Size (Million Parameters)': 278,
|
51 |
'Embedding Dimensions': 768,
|
|
|
56 |
'Retrieval (3 datasets)': 56.31,
|
57 |
},
|
58 |
{
|
59 |
+
'Type': 'π’',
|
60 |
'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
|
61 |
'Model Size (Million Parameters)': 278,
|
62 |
'Embedding Dimensions': 768,
|
|
|
67 |
'Retrieval (3 datasets)': 64.13,
|
68 |
},
|
69 |
{
|
70 |
+
'Type': 'π’',
|
71 |
'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
|
72 |
'Model Size (Million Parameters)': 135,
|
73 |
'Embedding Dimensions': 512,
|
|
|
78 |
'Retrieval (3 datasets)': 42.72,
|
79 |
},
|
80 |
{
|
81 |
+
'Type': 'π’',
|
82 |
'Model Name': '[BGE-M3](https://huggingface.co/BAAI/bge-m3)',
|
83 |
'Model Size (Million Parameters)': 570,
|
84 |
'Embedding Dimensions': 1024,
|
|
|
89 |
'Retrieval (3 datasets)': 91.42,
|
90 |
},
|
91 |
{
|
92 |
+
'Type': 'π’',
|
93 |
'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
|
94 |
'Model Size (Million Parameters)': 279,
|
95 |
'Embedding Dimensions': 768,
|
|
|
100 |
'Retrieval (3 datasets)': 54.17,
|
101 |
},
|
102 |
{
|
103 |
+
'Type': 'π’',
|
104 |
'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
|
105 |
'Model Size (Million Parameters)': 106,
|
106 |
'Embedding Dimensions': 768,
|
|
|
111 |
'Retrieval (3 datasets)': 51.05,
|
112 |
},
|
113 |
{
|
114 |
+
'Type': 'π’',
|
115 |
'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
|
116 |
'Model Size (Million Parameters)': 278,
|
117 |
'Embedding Dimensions': 768,
|
|
|
122 |
'Retrieval (3 datasets)': 66.05,
|
123 |
},
|
124 |
{
|
125 |
+
'Type': 'π’',
|
126 |
'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
|
127 |
'Model Size (Million Parameters)': 279,
|
128 |
'Embedding Dimensions': 768,
|
|
|
133 |
'Retrieval (3 datasets)': 54.90,
|
134 |
},
|
135 |
{
|
136 |
+
'Type': 'π’',
|
137 |
'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
|
138 |
'Model Size (Million Parameters)': 106,
|
139 |
'Embedding Dimensions': 768,
|
|
|
144 |
'Retrieval (3 datasets)': 63.83,
|
145 |
},
|
146 |
{
|
147 |
+
'Type': 'π’',
|
148 |
'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
|
149 |
'Model Size (Million Parameters)': 278,
|
150 |
'Embedding Dimensions': 768,
|
|
|
155 |
'Retrieval (3 datasets)': 66.20,
|
156 |
},
|
157 |
{
|
158 |
+
'Type': 'π’',
|
159 |
'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
|
160 |
'Model Size (Million Parameters)': 279,
|
161 |
'Embedding Dimensions': 768,
|
|
|
166 |
'Retrieval (3 datasets)': 65.02,
|
167 |
},
|
168 |
{
|
169 |
+
'Type': 'π’',
|
170 |
'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
|
171 |
'Model Size (Million Parameters)': 106,
|
172 |
'Embedding Dimensions': 768,
|
|
|
177 |
'Retrieval (3 datasets)': 62.38,
|
178 |
},
|
179 |
{
|
180 |
+
'Type': 'π’',
|
181 |
'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
|
182 |
'Model Size (Million Parameters)': 278,
|
183 |
'Embedding Dimensions': 768,
|
|
|
188 |
'Retrieval (3 datasets)': 67.94,
|
189 |
},
|
190 |
{
|
191 |
+
'Type': 'π’',
|
192 |
'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
|
193 |
'Model Size (Million Parameters)': 279,
|
194 |
'Embedding Dimensions': 768,
|
|
|
199 |
'Retrieval (3 datasets)': 68.03,
|
200 |
},
|
201 |
{
|
202 |
+
'Type': 'π’',
|
203 |
'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
|
204 |
'Model Size (Million Parameters)': 106,
|
205 |
'Embedding Dimensions': 768,
|
|
|
210 |
'Retrieval (3 datasets)': 67.66,
|
211 |
},
|
212 |
{
|
213 |
+
'Type': 'π’',
|
214 |
'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
|
215 |
'Model Size (Million Parameters)': 278,
|
216 |
'Embedding Dimensions': 768,
|
|
|
221 |
'Retrieval (3 datasets)': 68.04,
|
222 |
},
|
223 |
{
|
224 |
+
'Type': 'π’',
|
225 |
'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
|
226 |
'Model Size (Million Parameters)': 7110,
|
227 |
'Embedding Dimensions': 4096,
|
|
|
232 |
'Retrieval (3 datasets)': 86.80,
|
233 |
},
|
234 |
{
|
235 |
+
'Type': 'π’',
|
236 |
'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
|
237 |
'Model Size (Million Parameters)': 7610,
|
238 |
'Embedding Dimensions': 3584,
|
|
|
243 |
'Retrieval (3 datasets)': 38.31,
|
244 |
},
|
245 |
{
|
246 |
+
'Type': 'π’',
|
247 |
'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
|
248 |
'Model Size (Million Parameters)': 7240,
|
249 |
'Embedding Dimensions': 4096,
|
|
|
254 |
'Retrieval (3 datasets)': 22.79,
|
255 |
},
|
256 |
{
|
257 |
+
'Type': 'π’',
|
258 |
'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
|
259 |
'Model Size (Million Parameters)': 8030,
|
260 |
'Embedding Dimensions': 4096,
|
|
|
265 |
'Retrieval (3 datasets)': 47.93,
|
266 |
},
|
267 |
{
|
268 |
+
'Type': 'π’',
|
269 |
'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
|
270 |
'Model Size (Million Parameters)': 8030,
|
271 |
'Embedding Dimensions': 4096,
|
|
|
276 |
'Retrieval (3 datasets)': 50.38,
|
277 |
},
|
278 |
{
|
279 |
+
'Type': 'π’',
|
280 |
'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
|
281 |
'Model Size (Million Parameters)': 8030,
|
282 |
'Embedding Dimensions': 4096,
|
|
|
287 |
'Retrieval (3 datasets)': 43.64,
|
288 |
},
|
289 |
{
|
290 |
+
'Type': 'π’',
|
291 |
'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
|
292 |
'Model Size (Million Parameters)': 8030,
|
293 |
'Embedding Dimensions': 4096,
|
|
|
298 |
'Retrieval (3 datasets)': 43.63,
|
299 |
},
|
300 |
{
|
301 |
+
'Type': 'π’',
|
302 |
'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
|
303 |
'Model Size (Million Parameters)': 8030,
|
304 |
'Embedding Dimensions': 4096,
|
|
|
309 |
'Retrieval (3 datasets)': 52.65,
|
310 |
},
|
311 |
{
|
312 |
+
'Type': 'π¦',
|
313 |
'Model Name': 'Cohere-embed-multilingual-v2.0',
|
314 |
'Model Size (Million Parameters)': "N/A",
|
315 |
'Embedding Dimensions': 768,
|
|
|
320 |
'Retrieval (3 datasets)': 85.23,
|
321 |
},
|
322 |
{
|
323 |
+
'Type': 'π¦',
|
324 |
'Model Name': 'Cohere-embed-multilingual-v3.0',
|
325 |
'Model Size (Million Parameters)': "N/A",
|
326 |
'Embedding Dimensions': 1024,
|
|
|
331 |
'Retrieval (3 datasets)': 91.43,
|
332 |
},
|
333 |
{
|
334 |
+
'Type': 'π¦',
|
335 |
'Model Name': 'Openai-text-embedding-3-large',
|
336 |
'Model Size (Million Parameters)': "N/A",
|
337 |
'Embedding Dimensions': 3072,
|
|
|
343 |
},
|
344 |
]
|
345 |
|
346 |
+
# Calculate average
|
347 |
+
results = [
|
348 |
+
{
|
349 |
+
**result,
|
350 |
+
'Average (8 datasets)': round(sum(
|
351 |
+
result.get(key, 0) for key in ['STS Average (1 datasets)', 'Classification (3 datasets)', 'PairClassification (1 datasets)', 'Retrieval (3 datasets)']
|
352 |
+
) / 4, 2),
|
353 |
+
}
|
354 |
+
for result in results
|
355 |
+
]
|
356 |
# Sort by average
|
357 |
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)
|
358 |
|