pantdipendra commited on
Commit
89e8b14
·
verified ·
1 Parent(s): 07f9caa

severity_msg

Browse files
Files changed (1) hide show
  1. app.py +28 -5
app.py CHANGED
@@ -315,13 +315,36 @@ def predict(
315
  # Evaluate severity using count_ones
316
  severity_base = predictor.evaluate_severity(count_ones)
317
 
 
 
 
 
 
 
 
 
318
  # -------------------------------
319
- # Sum of predicted probabilities
320
  # -------------------------------
321
- # 'probs' is a list of arrays; each array is the prob for class=2 from each model.
322
- sum_prob_2 = sum(prob[0] for prob in probs if not np.isnan(prob[0]))
323
- sum_prob_1 = sum((1 - prob[0]) for prob in probs if not np.isnan(prob[0]))
324
- severity_msg = f"{severity_base} (Sum of Prob (Bad Mental Status)={sum_prob_1:.2f}, Prob (Ok Mental Status)={sum_prob_2:.2f})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
 
326
  # 4) Summarize predictions (with probabilities)
327
  label_prediction_info = {}
 
315
  # Evaluate severity using count_ones
316
  severity_base = predictor.evaluate_severity(count_ones)
317
 
318
+ # # -------------------------------
319
+ # # Sum of predicted probabilities
320
+ # # -------------------------------
321
+ # # 'probs' is a list of arrays; each array is the prob for class=2 from each model.
322
+ # sum_prob_2 = sum(prob[0] for prob in probs if not np.isnan(prob[0]))
323
+ # sum_prob_1 = sum((1 - prob[0]) for prob in probs if not np.isnan(prob[0]))
324
+ # severity_msg = f"{severity_base} (Sum of Prob (Bad Mental Status)={sum_prob_1:.2f}, Prob (Ok Mental Status)={sum_prob_2:.2f})"
325
+
326
  # -------------------------------
327
+ # Sum, average, and standard deviation of predicted probabilities
328
  # -------------------------------
329
+
330
+ # Filter probabilities and exclude NaN values
331
+ filtered_probs_2 = [prob[0] for prob in probs if not np.isnan(prob[0])]
332
+ filtered_probs_1 = [1 - prob[0] for prob in probs if not np.isnan(prob[0])]
333
+
334
+ sum_prob_2 = sum(filtered_probs_2)
335
+ sum_prob_1 = sum(filtered_probs_1)
336
+
337
+ avg_prob_2 = np.mean(filtered_probs_2)
338
+ avg_prob_1 = np.mean(filtered_probs_1)
339
+
340
+ std_dev_prob_2 = np.std(filtered_probs_2)
341
+ std_dev_prob_1 = np.std(filtered_probs_1)
342
+
343
+ severity_msg = (
344
+ f"{severity_base} "
345
+ f"(Avg Prob (Bad Mental Status)={avg_prob_1:.2f} ± {std_dev_prob_1:.2f}, "
346
+ f"Avg Prob (Ok Mental Status)={avg_prob_2:.2f} ± {std_dev_prob_2:.2f})"
347
+ )
348
 
349
  # 4) Summarize predictions (with probabilities)
350
  label_prediction_info = {}