Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
from pprint import pprint | |
from datasets import load_dataset | |
from torch.utils.data import DataLoader | |
st.title("CS634 - milestone2 - Tedi Pano") | |
def load_data(): | |
dataset_dict = load_dataset('HUPD/hupd', | |
name='sample', | |
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", | |
icpr_label=None, | |
train_filing_start_date='2016-01-01', | |
train_filing_end_date='2016-01-21', | |
val_filing_start_date='2016-01-22', | |
val_filing_end_date='2016-01-31', | |
) | |
st.write('Loading is done!') | |
return dataset_dict | |
def training_computation(_dataset_dict): | |
df = pd.DataFrame(_dataset_dict['train']) | |
vf = pd.DataFrame(_dataset_dict['validation']) | |
accepted_rejected = ['ACCEPTED', 'REJECTED'] | |
df = df[df['decision'].isin(accepted_rejected)] | |
df['patentability_score'] = df['decision'].map({'ACCEPTED': 1, 'REJECTED': 0}) | |
vf = vf[vf['decision'].isin(accepted_rejected)] | |
vf['patentability_score'] = vf['decision'].map({'ACCEPTED': 1, 'REJECTED': 0}) | |
st.write("Processed the data") | |
from sklearn.model_selection import train_test_split | |
dftrain, dftest = train_test_split(df, test_size = 0.90, random_state = 0) | |
from transformers import DistilBertTokenizerFast | |
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') | |
X_dtrain = dftrain['abstract'].tolist() | |
y_dtrain = dftrain['patentability_score'].tolist() | |
X_vtrain = vf['abstract'].tolist() | |
y_vtrain = vf['patentability_score'].tolist() | |
X_dtest = dftest['abstract'].tolist() | |
y_dtest = dftest['patentability_score'].tolist() | |
train_encodings = tokenizer(X_dtrain, truncation=True, padding=True) | |
val_encodings = tokenizer(X_vtrain, truncation=True, padding=True) | |
test_encodings = tokenizer(X_dtest, truncation=True, padding=True) | |
st.write("tokenizing completed!") | |
import tensorflow as tf | |
train_dataset = tf.data.Dataset.from_tensor_slices(( | |
dict(train_encodings), | |
y_dtrain | |
)) | |
val_dataset = tf.data.Dataset.from_tensor_slices(( | |
dict(val_encodings), | |
y_vtrain | |
)) | |
test_dataset = tf.data.Dataset.from_tensor_slices(( | |
dict(test_encodings), | |
y_dtest | |
)) | |
st.write("back to dataset!") | |
from transformers import TFDistilBertForSequenceClassification, TFTrainer, TFTrainingArguments | |
training_args = TFTrainingArguments( | |
output_dir='./results', | |
num_train_epochs=2, | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
warmup_steps=500, | |
eval_steps=500, | |
weight_decay=0.01 | |
) | |
with training_args.strategy.scope(): | |
model = TFDistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased") | |
trainer = TFTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=val_dataset | |
) | |
trainer.train() | |
st.write("training completed") | |
return trainer | |
dataset_dict = load_data() | |
trainer = training_computation(dataset_dict) | |
patents = pd.DataFrame(dataset_dict['train']) | |
patent_selection = st.selectbox("Select Patent",patents['patent_number']) | |
patent = patents.loc[patents['patent_number'] == patent_selection] | |
st.write(patent['abstract']) | |
st.write(patent['claims']) | |