Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import streamlit as st | |
| from PIL import Image | |
| from streamlit_image_select import image_select | |
| import base64 | |
| import cv2 | |
| import tensorflow as tf | |
| # set title of page | |
| st.markdown("<h1 '><font color='red' ><center>Emotion Detector App</center></h1>",unsafe_allow_html=True) | |
| # ctreating gride of image to select | |
| img = image_select( | |
| label="_Select a image to predict_", | |
| images=[ | |
| "images/1.jpg", | |
| "images/2.jpeg", | |
| "images/3.jpeg", | |
| "images/4.jpg" | |
| ], | |
| ) | |
| # image select for background | |
| titleimg = "giphy (1).gif" | |
| #impliment background formating | |
| def set_bg_hack(main_bg): | |
| # set bg name | |
| main_bg_ext = "gif" | |
| st.markdown( | |
| f""" | |
| <style> | |
| .stApp {{ | |
| background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()}); | |
| background-repeat: no-repeat; | |
| background-position: right 50% bottom 95% ; | |
| background-size: cover; | |
| background-attachment: scroll; | |
| }} | |
| </style> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| set_bg_hack(titleimg) | |
| uploaded_img = st.file_uploader("Upload an image file", | |
| type = ["png", "jpg", "jpeg"]) | |
| # load model | |
| def cache_model(model_add): | |
| model = tf.keras.models.load_model(model_add) | |
| return model | |
| model = cache_model("emotion_detector") | |
| # creating predict button | |
| predict = st.button("Predict") | |
| # defining harcascade classifier and class_names | |
| face_detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") | |
| class_names = ["Angry", "Happy", "Sad"] | |
| def model_pred(model, image): | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| results = face_detector.detectMultiScale(gray, scaleFactor=1.05, | |
| minNeighbors=10, | |
| minSize=(100, 100)) | |
| if len(results) != 0: | |
| for x, y, w, h in results: | |
| img_crp = image[y:y + h, x:x + w] | |
| img_crp = cv2.resize(img_crp, (350, 350)) | |
| y_pred_prob = model.predict(tf.expand_dims(img_crp, | |
| axis=0)) | |
| y_pred = np.argmax(y_pred_prob, axis=-1) | |
| # print(y_pred_prob) | |
| label = class_names[int(y_pred)] | |
| cv2.rectangle(image, (x, y), (x + w, y + h), | |
| color=(0, 255, 0), | |
| thickness=10) | |
| cv2.putText(image, f"{label},{round(round(np.max(y_pred_prob), 2)*100,2)}%", | |
| (x, y + h), cv2.FONT_HERSHEY_COMPLEX, 2, | |
| (0, 255, 255), 2) | |
| return image | |
| if predict: | |
| if uploaded_img: | |
| # img_array = np.array(uploaded_img) | |
| img_array = np.array(Image.open(uploaded_img)) | |
| result_img = model_pred(model, img_array) | |
| st.image(result_img) | |
| # image select for background | |
| titleimg = "CLOUD.png" | |
| #impliment background formating | |
| def set_bg_hack(main_bg): | |
| # set bg name | |
| main_bg_ext = "png" | |
| st.markdown( | |
| f""" | |
| <style> | |
| .stApp {{ | |
| background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()}); | |
| background-repeat: no-repeat; | |
| background-position: right 50% bottom 95% ; | |
| background-size: cover; | |
| background-attachment: scroll; | |
| }} | |
| </style> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| set_bg_hack(titleimg) | |
| else: | |
| st.write("Please upload a valid image") | |
| else: | |
| image_array = np.array(Image.open(img)) | |
| result_img = model_pred(model, image_array) | |
| st.image(result_img) |