pankajsingh3012 commited on
Commit
cc25379
·
verified ·
1 Parent(s): 3ae2cd6

Upload 5 files

Browse files
Files changed (5) hide show
  1. .env +1 -0
  2. app.py +133 -0
  3. bg.jpeg +0 -0
  4. main.py +0 -0
  5. requirements.txt +9 -0
.env ADDED
@@ -0,0 +1 @@
 
 
1
+ GOOGLE_API_KEY="AIzaSyCkVGjyMN5proxDduY09SSjEhoQkhBycBI"
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #imporitng libraryies
2
+ import streamlit as st
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ import os
6
+ from langchain_google_genai import GoogleGenerativeAIEmbeddings
7
+ import google.generativeai as genai
8
+ from langchain.vectorstores import FAISS
9
+ from langchain_google_genai import ChatGoogleGenerativeAI
10
+ from langchain.chains.question_answering import load_qa_chain
11
+ from langchain.prompts import PromptTemplate
12
+ from dotenv import load_dotenv
13
+ import base64
14
+
15
+ load_dotenv()
16
+
17
+ #get api key
18
+ os.getenv("GOOGLE_API_KEY")
19
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
20
+
21
+
22
+
23
+
24
+
25
+ #pdf read and convert into raw text
26
+ def get_pdf_text(pdf_docs):
27
+ text=""
28
+ for pdf in pdf_docs:
29
+ pdf_reader= PdfReader(pdf)
30
+ for page in pdf_reader.pages:
31
+ text+= page.extract_text()
32
+ return text
33
+
34
+
35
+ #making chunks of text
36
+ def get_text_chunks(text):
37
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
38
+ chunks = text_splitter.split_text(text)
39
+ return chunks
40
+
41
+ #create embeddings and store in vector database
42
+ def get_vector_store(text_chunks):
43
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
44
+ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
45
+ vector_store.save_local("faiss_index")
46
+
47
+ #define chain
48
+ def get_conversational_chain():
49
+
50
+ prompt_template = """
51
+ Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
52
+ provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
53
+ Context:\n {context}?\n
54
+ Question: \n{question}\n
55
+
56
+ Answer:
57
+ """
58
+
59
+ model = ChatGoogleGenerativeAI(model="gemini-pro",
60
+ temperature=0.3)
61
+
62
+ prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
63
+ chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
64
+
65
+ return chain
66
+
67
+
68
+ #take user input
69
+ def user_input(user_question):
70
+ embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
71
+
72
+ new_db = FAISS.load_local("faiss_index", embeddings)
73
+ docs = new_db.similarity_search(user_question)
74
+
75
+ chain = get_conversational_chain()
76
+
77
+
78
+ response = chain(
79
+ {"input_documents":docs, "question": user_question}
80
+ , return_only_outputs=True)
81
+
82
+ print(response)
83
+ st.write("Reply: ", response["output_text"])
84
+
85
+
86
+
87
+ #steamlit interface
88
+ def main():
89
+ titleimg = "bg.jpeg"
90
+
91
+ # impliment background formating
92
+ def set_bg_hack(main_bg):
93
+ # set bg name
94
+ main_bg_ext = "jpeg"
95
+ st.markdown(
96
+ f"""
97
+ <style>
98
+ .stApp {{
99
+ background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
100
+ background-repeat: no-repeat;
101
+ background-position: right 50% bottom 95% ;
102
+ background-size: cover;
103
+ background-attachment: scroll;
104
+ }}
105
+ </style>
106
+ """,
107
+ unsafe_allow_html=True,
108
+ )
109
+
110
+ set_bg_hack(titleimg)
111
+
112
+ #st.set_page_config("Chat PDF")
113
+ st.header("Chat with PDF 💁")
114
+
115
+ user_question = st.text_input("Ask a Question from the PDF Files")
116
+
117
+ if user_question:
118
+ user_input(user_question)
119
+
120
+ with st.sidebar:
121
+ st.title("Menu:")
122
+ pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
123
+ if st.button("Submit & Process"):
124
+ with st.spinner("Processing..."):
125
+ raw_text = get_pdf_text(pdf_docs)
126
+ text_chunks = get_text_chunks(raw_text)
127
+ get_vector_store(text_chunks)
128
+ st.success("Done")
129
+
130
+
131
+
132
+ if __name__ == "__main__":
133
+ main()
bg.jpeg ADDED
main.py ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ google-generativeai
3
+ python-dotenv
4
+ langchain
5
+ PyPDF2
6
+ chromadb
7
+ faiss-cpu
8
+ langchain_google_genai
9
+ sentence-transformers