Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
from keras.preprocessing.image import img_to_array | |
from keras.models import model_from_json | |
# Facial expression recognizer initialization | |
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
model = model_from_json(open('facial_expression_model_structure.json', 'r').read()) | |
model.load_weights('facial_expression_model_weights.h5') | |
emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral') | |
def blur_image(img): | |
blur = cv2.blur(img,(10, 10)) | |
return blur | |
def process_image(img): | |
# Resize the frame | |
frame = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) | |
# Convert to grayscale | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
# Run the face detector on the grayscale image | |
face_rects = face_cascade.detectMultiScale(gray, 1.3, 5) | |
# Draw a rectangle around the face | |
for (x,y,w,h) in face_rects: | |
#cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3) | |
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) #draw rectangle to main image | |
detected_face = frame[int(y):int(y+h), int(x):int(x+w)] #crop detected face | |
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) #transform to gray scale | |
detected_face = cv2.resize(detected_face, (48, 48)) #resize to 48x48 | |
img_pixels = img_to_array(detected_face) | |
img_pixels = np.expand_dims(img_pixels, axis = 0) | |
img_pixels /= 255 #pixels are in scale of [0, 255]. normalize all pixels in scale of [0, 1] | |
predictions = model.predict(img_pixels) #store probabilities of 7 expressions | |
#find max indexed array 0: angry, 1:disgust, 2:fear, 3:happy, 4:sad, 5:surprise, 6:neutral | |
max_index = np.argmax(predictions[0]) | |
emotion = emotions[max_index] | |
#write emotion text above rectangle | |
cv2.putText(frame, emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) | |
return frame | |
interface = gr.Interface( | |
fn = process_image, | |
#inputs='image', | |
inputs="webcam", | |
outputs='image', | |
title='Facial Expression', | |
description='Facial expression detection test') | |
interface.launch() |