Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import torch | |
| from torch import nn | |
| from ddiffusers.configuration_utils import ConfigMixin, register_to_config | |
| from ddiffusers.models.modeling_utils import ModelMixin | |
| from ddiffusers.utils import BaseOutput | |
| from ddiffusers.models.attention import BasicTransformerBlock | |
| from einops import rearrange, repeat | |
| class Transformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| norm_type: str = "layer_norm", | |
| norm_elementwise_affine: bool = True, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # Define input layers | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| norm_type=norm_type, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): | |
| # Input | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| batch_size, _, video_length = hidden_states.shape[:3] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
| if encoder_hidden_states.shape[0] == batch_size: | |
| encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) | |
| elif encoder_hidden_states.shape[0] == batch_size * video_length: | |
| pass | |
| else: | |
| raise ValueError | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| ) | |
| # Output | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |