|
import gradio as gr |
|
|
|
from matplotlib import gridspec |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from PIL import Image |
|
import tensorflow as tf |
|
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation |
|
|
|
feature_extractor = SegformerFeatureExtractor.from_pretrained( |
|
"nvidia/segformer-b2-finetuned-ade-512-512" |
|
) |
|
model = TFSegformerForSemanticSegmentation.from_pretrained( |
|
"nvidia/segformer-b2-finetuned-ade-512-512" |
|
) |
|
|
|
def ade_palette(): |
|
"""ADE20K palette that maps each class to RGB values.""" |
|
return [ |
|
[204, 87, 92], |
|
[112, 185, 212], |
|
[45, 189, 106], |
|
[234, 123, 67], |
|
[78, 56, 123], |
|
[210, 32, 89], |
|
[90, 180, 56], |
|
[155, 102, 200], |
|
[33, 147, 176], |
|
[255, 183, 76], |
|
[67, 123, 89], |
|
[190, 60, 45], |
|
[134, 112, 200], |
|
[56, 45, 189], |
|
[200, 56, 123], |
|
[87, 92, 204], |
|
[120, 56, 123], |
|
[45, 78, 123], |
|
[156, 200, 56], |
|
[32, 90, 210], |
|
[56, 123, 67], |
|
[180, 56, 123], |
|
[123, 67, 45], |
|
[45, 134, 200], |
|
[67, 56, 123], |
|
[78, 123, 67], |
|
[32, 210, 90], |
|
[45, 56, 189], |
|
[123, 56, 123], |
|
[56, 156, 200], |
|
[189, 56, 45], |
|
[112, 200, 56], |
|
[56, 123, 45], |
|
[200, 32, 90], |
|
[123, 45, 78], |
|
[200, 156, 56], |
|
[45, 67, 123], |
|
[56, 45, 78], |
|
[45, 56, 123], |
|
[123, 67, 56], |
|
[56, 78, 123], |
|
[210, 90, 32], |
|
[123, 56, 189], |
|
[45, 200, 134], |
|
[67, 123, 56], |
|
[123, 45, 67], |
|
[90, 32, 210], |
|
[200, 45, 78], |
|
[32, 210, 90], |
|
[45, 123, 67], |
|
[165, 42, 87], |
|
[72, 145, 167], |
|
[15, 158, 75], |
|
[209, 89, 40], |
|
[32, 21, 121], |
|
[184, 20, 100], |
|
[56, 135, 15], |
|
[128, 92, 176], |
|
[1, 119, 140], |
|
[220, 151, 43], |
|
[41, 97, 72], |
|
[148, 38, 27], |
|
[107, 86, 176], |
|
[21, 26, 136], |
|
[174, 27, 90], |
|
[91, 96, 204], |
|
[108, 50, 107], |
|
[27, 45, 136], |
|
[168, 200, 52], |
|
[7, 102, 27], |
|
[42, 93, 56], |
|
[140, 52, 112], |
|
[92, 107, 168], |
|
[17, 118, 176], |
|
[59, 50, 174], |
|
[206, 40, 143], |
|
[44, 19, 142], |
|
[23, 168, 75], |
|
[54, 57, 189], |
|
[144, 21, 15], |
|
[15, 176, 35], |
|
[107, 19, 79], |
|
[204, 52, 114], |
|
[48, 173, 83], |
|
[11, 120, 53], |
|
[206, 104, 28], |
|
[20, 31, 153], |
|
[27, 21, 93], |
|
[11, 206, 138], |
|
[112, 30, 83], |
|
[68, 91, 152], |
|
[153, 13, 43], |
|
[25, 114, 54], |
|
[92, 27, 150], |
|
[108, 42, 59], |
|
[194, 77, 5], |
|
[145, 48, 83], |
|
[7, 113, 19], |
|
[25, 92, 113], |
|
[60, 168, 79], |
|
[78, 33, 120], |
|
[89, 176, 205], |
|
[27, 200, 94], |
|
[210, 67, 23], |
|
[123, 89, 189], |
|
[225, 56, 112], |
|
[75, 156, 45], |
|
[172, 104, 200], |
|
[15, 170, 197], |
|
[240, 133, 65], |
|
[89, 156, 112], |
|
[214, 88, 57], |
|
[156, 134, 200], |
|
[78, 57, 189], |
|
[200, 78, 123], |
|
[106, 120, 210], |
|
[145, 56, 112], |
|
[89, 120, 189], |
|
[185, 206, 56], |
|
[47, 99, 28], |
|
[112, 189, 78], |
|
[200, 112, 89], |
|
[89, 145, 112], |
|
[78, 106, 189], |
|
[112, 78, 189], |
|
[156, 112, 78], |
|
[28, 210, 99], |
|
[78, 89, 189], |
|
[189, 78, 57], |
|
[112, 200, 78], |
|
[189, 47, 78], |
|
[205, 112, 57], |
|
[78, 145, 57], |
|
[200, 78, 112], |
|
[99, 89, 145], |
|
[200, 156, 78], |
|
[57, 78, 145], |
|
[78, 57, 99], |
|
[57, 78, 145], |
|
[145, 112, 78], |
|
[78, 89, 145], |
|
[210, 99, 28], |
|
[145, 78, 189], |
|
[57, 200, 136], |
|
[89, 156, 78], |
|
[145, 78, 99], |
|
[99, 28, 210], |
|
[189, 78, 47], |
|
[28, 210, 99], |
|
[78, 145, 57], |
|
] |
|
|
|
labels_list = [] |
|
|
|
with open(r'labels.txt', 'r') as fp: |
|
for line in fp: |
|
labels_list.append(line[:-1]) |
|
|
|
colormap = np.asarray(ade_palette()) |
|
|
|
def label_to_color_image(label): |
|
if label.ndim != 2: |
|
raise ValueError("Expect 2-D input label") |
|
|
|
if np.max(label) >= len(colormap): |
|
raise ValueError("label value too large.") |
|
return colormap[label] |
|
|
|
def draw_plot(pred_img, seg): |
|
fig = plt.figure(figsize=(15, 20)) |
|
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
plt.subplot(grid_spec[0]) |
|
plt.imshow(pred_img) |
|
plt.axis('off') |
|
LABEL_NAMES = np.asarray(labels_list) |
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
unique_labels = np.unique(seg.numpy().astype("uint8")) |
|
ax = plt.subplot(grid_spec[1]) |
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
ax.yaxis.tick_right() |
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
plt.xticks([], []) |
|
ax.tick_params(width=0.0, labelsize=25) |
|
return fig |
|
|
|
def sepia(input_img): |
|
input_img = Image.fromarray(input_img) |
|
|
|
inputs = feature_extractor(images=input_img, return_tensors="tf") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
logits = tf.transpose(logits, [0, 2, 3, 1]) |
|
logits = tf.image.resize( |
|
logits, input_img.size[::-1] |
|
) |
|
seg = tf.math.argmax(logits, axis=-1)[0] |
|
|
|
color_seg = np.zeros( |
|
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8 |
|
) |
|
for label, color in enumerate(colormap): |
|
color_seg[seg.numpy() == label, :] = color |
|
|
|
|
|
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 |
|
pred_img = pred_img.astype(np.uint8) |
|
|
|
fig = draw_plot(pred_img, seg) |
|
return fig |
|
|
|
demo = gr.Interface(fn=sepia, |
|
inputs=gr.Image(shape=(400, 600)), |
|
outputs=['plot'], |
|
examples=["kitchen.jpg", "bridge.jpg", "red.jpg", "livingroom.jpg"], |
|
allow_flagging='never') |
|
|
|
|
|
demo.launch() |
|
|