Spaces:
Running
Running
# Copyright (C) 2023, Xu Sun. | |
# This program is licensed under the Apache License version 2. | |
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details. | |
import torch | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import streamlit as st | |
from PIL import Image | |
from glaucoma import GlaucomaModel | |
run_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def main(): | |
# Wide mode | |
st.set_page_config(layout="wide") | |
# Designing the interface | |
st.title("Glaucoma Screening from Retinal Fundus Images") | |
# For newline | |
st.write('\n') | |
# Author info | |
st.write('Developed by X. Sun. Find more info about me: https://pamixsun.github.io') | |
# For newline | |
st.write('\n') | |
# Instructions | |
st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*") | |
# Set the columns | |
cols = st.beta_columns((1, 1, 1)) | |
cols[0].subheader("Input image") | |
cols[1].subheader("Optic disc and optic cup") | |
cols[2].subheader("Class activation map") | |
# set the visualization figure | |
fig, ax = plt.subplots() | |
# Sidebar | |
# File selection | |
st.sidebar.title("Image selection") | |
# Disabling warning | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
# Choose your own image | |
uploaded_file = st.sidebar.file_uploader("Upload image", type=['png', 'jpeg', 'jpg']) | |
if uploaded_file is not None: | |
# read the upload image | |
image = Image.open(uploaded_file).convert('RGB') | |
image = np.array(image).astype(np.uint8) | |
# page_idx = 0 | |
ax.imshow(image) | |
ax.axis('off') | |
cols[0].pyplot(fig) | |
# For newline | |
st.sidebar.write('\n') | |
# actions | |
if st.sidebar.button("Analyze image"): | |
if uploaded_file is None: | |
st.sidebar.write("Please upload an image") | |
else: | |
with st.spinner('Loading model...'): | |
# load model | |
model = GlaucomaModel(device=run_device) | |
with st.spinner('Analyzing...'): | |
# Forward the image to the model and get results | |
disease_idx, disc_cup_image, cam, vcdr = model.process(image) | |
# plot the optic disc and optic cup image | |
ax.imshow(disc_cup_image) | |
ax.axis('off') | |
cols[1].pyplot(fig) | |
# plot the stitched image | |
ax.imshow(cam) | |
ax.axis('off') | |
cols[2].pyplot(fig) | |
# Display JSON | |
st.subheader(" Screening results:") | |
st.write('\n') | |
final_results_as_table = f""" | |
|Parameters|Outcomes| | |
|---|---| | |
|Vertical cup-to-disc ratio|{vcdr:.04f}| | |
|Category|{model.cls_id2label[disease_idx]}| | |
""" | |
st.markdown(final_results_as_table) | |
if __name__ == '__main__': | |
main() |