Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import theme | |
theme = theme.Theme() | |
import os | |
import sys | |
sys.path.append('../..') | |
#langchain | |
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.schema import StrOutputParser | |
from langchain.schema.runnable import Runnable | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain.chains import ( | |
LLMChain, ConversationalRetrievalChain) | |
from langchain.vectorstores import Chroma | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import LLMChain | |
from langchain.prompts.prompt import PromptTemplate | |
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate | |
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder | |
from langchain.document_loaders import PyPDFDirectoryLoader | |
from pydantic import BaseModel, Field | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.document_loaders import WebBaseLoader | |
from pydantic import BaseModel | |
import shutil | |
custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>" | |
from huggingface_hub import from_pretrained_keras | |
import tensorflow as tf | |
from tensorflow import keras | |
from PIL import Image | |
# Cell 1: Image Classification Model | |
model1 = from_pretrained_keras("rocioadlc/EfficientNetV2L") | |
# Define class labels | |
class_labels = ['cardboard', 'compost', 'glass', 'metal', 'paper', 'plastic', 'trash'] | |
# Function to predict image label and score | |
def predict_image(input): | |
# Resize the image to the size expected by the model | |
image = input.resize((224, 224)) | |
# Convert the image to a NumPy array | |
image_array = tf.keras.preprocessing.image.img_to_array(image) | |
# Normalize the image | |
image_array /= 255.0 | |
# Expand the dimensions to create a batch | |
image_array = tf.expand_dims(image_array, 0) | |
# Predict using the model | |
predictions = model1.predict(image_array) | |
# Get the predicted class label | |
predicted_class_index = tf.argmax(predictions, axis=1).numpy()[0] | |
predicted_class_label = class_labels[predicted_class_index] | |
# Get the confidence score of the predicted class | |
confidence_score = predictions[0][predicted_class_index] | |
# Return input image path, predicted class label, and confidence score | |
return input, {predicted_class_label: confidence_score} | |
image_gradio_app = gr.Interface( | |
fn=predict_image, | |
inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"), | |
outputs=[gr.Label(label="Result")], | |
title=custom_title, | |
theme=theme | |
) | |
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"]) | |
data=loader.load() | |
# split documents | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1024, | |
chunk_overlap=150, | |
length_function=len | |
) | |
docs = text_splitter.split_documents(data) | |
# define embedding | |
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small') | |
# create vector database from data | |
persist_directory = 'docs/chroma/' | |
# Remove old database files if any | |
shutil.rmtree(persist_directory, ignore_errors=True) | |
vectordb = Chroma.from_documents( | |
documents=docs, | |
embedding=embeddings, | |
persist_directory=persist_directory | |
) | |
# define retriever | |
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr") | |
class FinalAnswer(BaseModel): | |
question: str = Field(description="the original question") | |
answer: str = Field(description="the extracted answer") | |
# Assuming you have a parser for the FinalAnswer class | |
parser = PydanticOutputParser(pydantic_object=FinalAnswer) | |
template = """ | |
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish / | |
Use the following pieces of context to answer the question / | |
If the question is English answer in English / | |
If the question is Spanish answer in Spanish / | |
Do not mention the word context when you answer a question / | |
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short / | |
Context: {context} | |
User: {question} | |
{format_instructions} | |
""" | |
# Create the chat prompt templates | |
sys_prompt = SystemMessagePromptTemplate.from_template(template) | |
qa_prompt = ChatPromptTemplate( | |
messages=[ | |
sys_prompt, | |
HumanMessagePromptTemplate.from_template("{question}")], | |
partial_variables={"format_instructions": parser.get_format_instructions()} | |
) | |
llm = HuggingFaceHub( | |
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
task="text-generation", | |
model_kwargs={ | |
"max_new_tokens": 2000, | |
"top_k": 30, | |
"temperature": 0.1, | |
"repetition_penalty": 1.03 | |
}, | |
) | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm = llm, | |
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'), | |
retriever = retriever, | |
verbose = True, | |
combine_docs_chain_kwargs={'prompt': qa_prompt}, | |
get_chat_history = lambda h : h, | |
rephrase_question = False, | |
output_key = 'output', | |
) | |
def chat_interface(question,history): | |
result = qa_chain.invoke({'question': question}) | |
output_string = result['output'] | |
# Find the index of the last occurrence of "answer": in the string | |
answer_index = output_string.rfind('"answer":') | |
# Extract the substring starting from the "answer": index | |
answer_part = output_string[answer_index + len('"answer":'):].strip() | |
# Find the next occurrence of a double quote to get the start of the answer value | |
quote_index = answer_part.find('"') | |
# Extract the answer value between double quotes | |
answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)] | |
return answer_value | |
chatbot_gradio_app = gr.ChatInterface( | |
fn=chat_interface, | |
title=custom_title | |
) | |
# Combine both interfaces into a single app | |
app = gr.TabbedInterface( | |
[image_gradio_app, chatbot_gradio_app], | |
tab_names=["Green Greta Image Classification","Green Greta Chat"], | |
theme=theme | |
) | |
app.queue() | |
app.launch() |