Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
#
|
2 |
import gradio as gr
|
3 |
-
from transformers import pipeline
|
|
|
4 |
|
|
|
5 |
image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
6 |
|
7 |
def predict_image(input_img):
|
@@ -9,17 +11,13 @@ def predict_image(input_img):
|
|
9 |
return input_img, {p["label"]: p["score"] for p in predictions}
|
10 |
|
11 |
image_gradio_app = gr.Interface(
|
12 |
-
predict_image,
|
13 |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
14 |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
15 |
title="Hot Dog? Or Not?",
|
16 |
)
|
17 |
|
18 |
-
#
|
19 |
-
import gradio as gr
|
20 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
-
import torch
|
22 |
-
|
23 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
24 |
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
25 |
|
@@ -32,15 +30,15 @@ def predict_chatbot(input, history=[]):
|
|
32 |
response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
|
33 |
return response_tuples, history
|
34 |
|
35 |
-
chatbot_gradio_app = gr.
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
image_gradio_app
|
46 |
-
|
|
|
1 |
+
# Combined Interface
|
2 |
import gradio as gr
|
3 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
|
6 |
+
# Image Classification Model
|
7 |
image_pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
8 |
|
9 |
def predict_image(input_img):
|
|
|
11 |
return input_img, {p["label"]: p["score"] for p in predictions}
|
12 |
|
13 |
image_gradio_app = gr.Interface(
|
14 |
+
fn=predict_image,
|
15 |
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
16 |
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
17 |
title="Hot Dog? Or Not?",
|
18 |
)
|
19 |
|
20 |
+
# Chatbot Model
|
|
|
|
|
|
|
|
|
21 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
22 |
chatbot_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
23 |
|
|
|
30 |
response_tuples = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]
|
31 |
return response_tuples, history
|
32 |
|
33 |
+
chatbot_gradio_app = gr.Interface(
|
34 |
+
fn=predict_chatbot,
|
35 |
+
inputs=[gr.Textbox(show_label=False, placeholder="Enter text and press enter"), gr.State()],
|
36 |
+
outputs=[gr.Chatbot(), gr.State()],
|
37 |
+
live=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Display both interfaces vertically
|
41 |
+
gr.Interface(
|
42 |
+
columns=2,
|
43 |
+
children=[image_gradio_app, chatbot_gradio_app]
|
44 |
+
).launch()
|