diarization1Mæló
Browse files
app.py
CHANGED
|
@@ -1,12 +1,24 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
| 5 |
-
from transformers import pipeline
|
| 6 |
-
from pyannote.audio import Pipeline
|
| 7 |
-
import torch
|
| 8 |
import tempfile
|
|
|
|
|
|
|
| 9 |
from torch.serialization import safe_globals
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
MODEL_NAME = "palli23/whisper-small-sam_spjall"
|
| 12 |
|
|
@@ -15,49 +27,52 @@ def transcribe_with_diarization(audio_path):
|
|
| 15 |
if not audio_path:
|
| 16 |
return "Hladdu upp hljóðskrá"
|
| 17 |
|
| 18 |
-
#
|
| 19 |
with safe_globals([
|
| 20 |
torch.torch_version.TorchVersion,
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
]):
|
| 23 |
diarization = Pipeline.from_pretrained(
|
| 24 |
"pyannote/speaker-diarization-3.1",
|
| 25 |
-
|
| 26 |
).to("cuda")
|
| 27 |
|
| 28 |
-
#
|
| 29 |
dia = diarization(audio_path)
|
| 30 |
-
|
| 31 |
-
# Whisper
|
| 32 |
asr = pipeline(
|
| 33 |
"automatic-speech-recognition",
|
| 34 |
model=MODEL_NAME,
|
| 35 |
device=0,
|
| 36 |
-
|
| 37 |
)
|
| 38 |
-
|
|
|
|
| 39 |
result = []
|
| 40 |
for turn, _, speaker in dia.itertracks(yield_label=True):
|
| 41 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
text = asr(
|
|
|
|
| 46 |
result.append(f"[MÆLENDI {speaker}] {text}")
|
| 47 |
-
os.unlink(segment_path)
|
| 48 |
-
|
| 49 |
-
return "\n".join(result) or "Ekkert heyrt"
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
with gr.Blocks() as demo:
|
| 53 |
gr.Markdown("# Íslenskt ASR + Mælendagreining")
|
| 54 |
-
gr.Markdown("
|
| 55 |
-
gr.Markdown("Hladdu upp .mp3 / .wav (allt að 5 mín)")
|
| 56 |
|
| 57 |
audio = gr.Audio(type="filepath", label="Hljóðskrá")
|
| 58 |
-
btn = gr.Button("Transcribe með mælendum"
|
| 59 |
-
out = gr.Textbox(lines=35, label="
|
| 60 |
-
|
| 61 |
btn.click(transcribe_with_diarization, inputs=audio, outputs=out)
|
| 62 |
|
| 63 |
-
demo.launch(auth=("beta", "beta2025"))
|
|
|
|
| 1 |
+
# app.py for HF Spaces (ZeroGPU safe pyannote)
|
| 2 |
import os
|
| 3 |
import gradio as gr
|
| 4 |
import spaces
|
|
|
|
|
|
|
|
|
|
| 5 |
import tempfile
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
from torch.serialization import safe_globals
|
| 9 |
+
from pyannote.audio.core.model import Model
|
| 10 |
+
from pyannote.audio.core.task import Task, Specifications
|
| 11 |
+
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
|
| 12 |
+
from typing import OrderedDict
|
| 13 |
+
|
| 14 |
+
from transformers import pipeline
|
| 15 |
+
from pyannote.audio import Pipeline
|
| 16 |
+
|
| 17 |
+
# Required patches for ZeroGPU
|
| 18 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 19 |
+
torch.serialization.add_safe_globals({
|
| 20 |
+
"OrderedDict": OrderedDict,
|
| 21 |
+
})
|
| 22 |
|
| 23 |
MODEL_NAME = "palli23/whisper-small-sam_spjall"
|
| 24 |
|
|
|
|
| 27 |
if not audio_path:
|
| 28 |
return "Hladdu upp hljóðskrá"
|
| 29 |
|
| 30 |
+
# Fix strict unpickling in torch 2.6 (ZeroGPU)
|
| 31 |
with safe_globals([
|
| 32 |
torch.torch_version.TorchVersion,
|
| 33 |
+
Model,
|
| 34 |
+
Task,
|
| 35 |
+
Specifications,
|
| 36 |
+
SpeakerDiarization,
|
| 37 |
+
OrderedDict,
|
| 38 |
]):
|
| 39 |
diarization = Pipeline.from_pretrained(
|
| 40 |
"pyannote/speaker-diarization-3.1",
|
| 41 |
+
use_auth_token=os.getenv("HF_TOKEN")
|
| 42 |
).to("cuda")
|
| 43 |
|
| 44 |
+
# Run diarization
|
| 45 |
dia = diarization(audio_path)
|
| 46 |
+
|
| 47 |
+
# Whisper model
|
| 48 |
asr = pipeline(
|
| 49 |
"automatic-speech-recognition",
|
| 50 |
model=MODEL_NAME,
|
| 51 |
device=0,
|
| 52 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
| 53 |
)
|
| 54 |
+
|
| 55 |
+
# segment-by-segment ASR
|
| 56 |
result = []
|
| 57 |
for turn, _, speaker in dia.itertracks(yield_label=True):
|
| 58 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
| 59 |
+
diarization.crop(audio_path, turn).export(f.name, format="wav")
|
| 60 |
+
chunk = f.name
|
| 61 |
+
|
| 62 |
+
text = asr(chunk)["text"].strip()
|
| 63 |
+
os.unlink(chunk)
|
| 64 |
result.append(f"[MÆLENDI {speaker}] {text}")
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
return "\n".join(result) or "Enginn texti heyrðist."
|
| 67 |
+
|
| 68 |
with gr.Blocks() as demo:
|
| 69 |
gr.Markdown("# Íslenskt ASR + Mælendagreining")
|
| 70 |
+
gr.Markdown("Whisper-small + pyannote 3.1 (ZeroGPU örugg útgáfa)")
|
|
|
|
| 71 |
|
| 72 |
audio = gr.Audio(type="filepath", label="Hljóðskrá")
|
| 73 |
+
btn = gr.Button("Transcribe með mælendum")
|
| 74 |
+
out = gr.Textbox(lines=35, label="Úttak")
|
| 75 |
+
|
| 76 |
btn.click(transcribe_with_diarization, inputs=audio, outputs=out)
|
| 77 |
|
| 78 |
+
demo.launch(auth=("beta", "beta2025"))
|