Spaces:
Runtime error
Runtime error
""" | |
A model worker executes the model. | |
""" | |
import argparse | |
import asyncio | |
import dataclasses | |
import logging | |
import json | |
import os | |
import time | |
from typing import List, Union | |
import threading | |
import uuid | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.responses import StreamingResponse | |
import requests | |
try: | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
LlamaTokenizer, | |
AutoModel, | |
) | |
except ImportError: | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
LLaMATokenizer, | |
AutoModel, | |
) | |
import torch | |
import uvicorn | |
from fastchat.constants import WORKER_HEART_BEAT_INTERVAL | |
from fastchat.serve.inference import load_model, generate_stream | |
from fastchat.serve.serve_chatglm import chatglm_generate_stream | |
from fastchat.utils import build_logger, server_error_msg, pretty_print_semaphore | |
GB = 1 << 30 | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
global_counter = 0 | |
model_semaphore = None | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
class ModelWorker: | |
def __init__( | |
self, | |
controller_addr, | |
worker_addr, | |
worker_id, | |
no_register, | |
model_path, | |
model_name, | |
device, | |
num_gpus, | |
max_gpu_memory, | |
load_8bit=False, | |
): | |
self.controller_addr = controller_addr | |
self.worker_addr = worker_addr | |
self.worker_id = worker_id | |
if model_path.endswith("/"): | |
model_path = model_path[:-1] | |
self.model_name = model_name or model_path.split("/")[-1] | |
self.device = device | |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
self.model, self.tokenizer = load_model( | |
model_path, device, num_gpus, max_gpu_memory, load_8bit | |
) | |
if hasattr(self.model.config, "max_sequence_length"): | |
self.context_len = self.model.config.max_sequence_length | |
elif hasattr(self.model.config, "max_position_embeddings"): | |
self.context_len = self.model.config.max_position_embeddings | |
else: | |
self.context_len = 2048 | |
is_chatglm = "chatglm" in str(type(self.model)).lower() | |
if is_chatglm: | |
self.generate_stream_func = chatglm_generate_stream | |
else: | |
self.generate_stream_func = generate_stream | |
if not no_register: | |
self.register_to_controller() | |
self.heart_beat_thread = threading.Thread( | |
target=heart_beat_worker, args=(self,) | |
) | |
self.heart_beat_thread.start() | |
def register_to_controller(self): | |
logger.info("Register to controller") | |
url = self.controller_addr + "/register_worker" | |
data = { | |
"worker_name": self.worker_addr, | |
"check_heart_beat": True, | |
"worker_status": self.get_status(), | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
def send_heart_beat(self): | |
logger.info( | |
f"Send heart beat. Models: {[self.model_name]}. " | |
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
f"global_counter: {global_counter}" | |
) | |
url = self.controller_addr + "/receive_heart_beat" | |
while True: | |
try: | |
ret = requests.post( | |
url, | |
json={ | |
"worker_name": self.worker_addr, | |
"queue_length": self.get_queue_length(), | |
}, | |
timeout=5, | |
) | |
exist = ret.json()["exist"] | |
break | |
except requests.exceptions.RequestException as e: | |
logger.error(f"heart beat error: {e}") | |
time.sleep(5) | |
if not exist: | |
self.register_to_controller() | |
def get_queue_length(self): | |
if ( | |
model_semaphore is None | |
or model_semaphore._value is None | |
or model_semaphore._waiters is None | |
): | |
return 0 | |
else: | |
return ( | |
args.limit_model_concurrency | |
- model_semaphore._value | |
+ len(model_semaphore._waiters) | |
) | |
def get_status(self): | |
return { | |
"model_names": [self.model_name], | |
"speed": 1, | |
"queue_length": self.get_queue_length(), | |
} | |
def generate_stream_gate(self, params): | |
try: | |
for output in self.generate_stream_func( | |
self.model, | |
self.tokenizer, | |
params, | |
self.device, | |
self.context_len, | |
args.stream_interval, | |
): | |
ret = { | |
"text": output, | |
"error_code": 0, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except torch.cuda.OutOfMemoryError: | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
app = FastAPI() | |
def release_model_semaphore(): | |
model_semaphore.release() | |
async def api_generate_stream(request: Request): | |
global model_semaphore, global_counter | |
global_counter += 1 | |
params = await request.json() | |
if model_semaphore is None: | |
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
await model_semaphore.acquire() | |
generator = worker.generate_stream_gate(params) | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task(release_model_semaphore) | |
return StreamingResponse(generator, background=background_tasks) | |
async def api_get_status(request: Request): | |
return worker.get_status() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="localhost") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") | |
parser.add_argument( | |
"--controller-address", type=str, default="http://localhost:21001" | |
) | |
parser.add_argument( | |
"--model-path", | |
type=str, | |
default="facebook/opt-350m", | |
help="The path to the weights", | |
) | |
parser.add_argument("--model-name", type=str, help="Optional name") | |
parser.add_argument( | |
"--device", type=str, choices=["cpu", "cuda", "mps"], default="cuda" | |
) | |
parser.add_argument("--num-gpus", type=int, default=1) | |
parser.add_argument( | |
"--gpus", | |
type=str, | |
default=None, | |
help="A single GPU like 1 or multiple GPUs like 0,2" | |
) | |
parser.add_argument( | |
"--max-gpu-memory", | |
type=str, | |
help="The maximum memory per gpu. Use a string like '13Gib'", | |
) | |
parser.add_argument("--load-8bit", action="store_true") | |
parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
parser.add_argument("--stream-interval", type=int, default=2) | |
parser.add_argument("--no-register", action="store_true") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
if args.gpus: | |
if args.num_gpus and len(args.gpus.split(",")) < int(args.num_gpus): | |
raise ValueError(f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!") | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
worker = ModelWorker( | |
args.controller_address, | |
args.worker_address, | |
worker_id, | |
args.no_register, | |
args.model_path, | |
args.model_name, | |
args.device, | |
args.num_gpus, | |
args.max_gpu_memory, | |
args.load_8bit, | |
) | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |