Spaces:
Runtime error
Runtime error
# Usage: deepspeed train_lora.py --deepspeed <$PATH_TO_DEEPSPEED_CONFIG> | |
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
import logging | |
import pathlib | |
import typing | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
from peft import LoraConfig, get_peft_model | |
import transformers | |
from transformers import Trainer | |
from fastchat.train.train import ( | |
DataArguments, | |
ModelArguments, | |
TrainingArguments, | |
make_supervised_data_module, | |
) | |
from fastchat.train.llama_flash_attn_monkey_patch import ( | |
replace_llama_attn_with_flash_attn, | |
) | |
replace_llama_attn_with_flash_attn() | |
class LoraArguments: | |
lora_r: int = 8 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_target_modules: typing.List[str] = field( | |
default_factory=lambda: ["q_proj", "v_proj"] | |
) | |
lora_weight_path: str = "" | |
bias: str = "none" | |
def maybe_zero_3(param): | |
if hasattr(param, "ds_id"): | |
assert param.ds_status == ZeroParamStatus.NOT_AVAILABLE | |
with zero.GatheredParameters([param]): | |
param = param.data.cpu().clone().detach() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(state_dict, bias): | |
if bias == "none": | |
to_return = { | |
k: state_dict[k].cpu().clone().detach() for k in state_dict if "lora_" in k | |
} | |
elif bias == "all": | |
to_return = { | |
k: state_dict[k] for k in state_dict if "lora_" in k or "bias" in k | |
} | |
elif bias == "lora_only": | |
to_return = {} | |
for k in state_dict: | |
if "lora_" in k: | |
to_return[k] = state_dict[k] | |
bias_name = k.split("lora_")[0] + "bias" | |
if bias_name in state_dict: | |
to_return[bias_name] = state_dict[bias_name] | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} | |
return to_return | |
def train(): | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments, LoraArguments) | |
) | |
( | |
model_args, | |
data_args, | |
training_args, | |
lora_args, | |
) = parser.parse_args_into_dataclasses() | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
) | |
lora_config = LoraConfig( | |
r=lora_args.lora_r, | |
lora_alpha=lora_args.lora_alpha, | |
target_modules=lora_args.lora_target_modules, | |
lora_dropout=lora_args.lora_dropout, | |
bias=lora_args.bias, | |
task_type="CAUSAL_LM", | |
) | |
model = get_peft_model(model, lora_config) | |
if training_args.deepspeed is not None and training_args.local_rank == 0: | |
model.print_trainable_parameters() | |
if training_args.gradient_checkpointing: | |
logging.warning( | |
"gradient checkpointing with lora makes requires_grad " | |
"incorrect and needs a monkey patch in Trainer or the " | |
"wrapped model's forward. ref: " | |
"https://github.com/lm-sys/FastChat/pull/138#issuecomment-1509172198" | |
) | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
tokenizer.pad_token = tokenizer.unk_token | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
trainer = Trainer( | |
model=model, tokenizer=tokenizer, args=training_args, **data_module | |
) | |
model.config.use_cache = False | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
# Save states. Weights might be a placeholder in zero3 and need a gather | |
state_dict = get_peft_state_maybe_zero_3(model.state_dict(), lora_args.bias) | |
if training_args.local_rank == 0: | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
if __name__ == "__main__": | |
train() | |