Spaces:
Sleeping
Sleeping
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Pinecone | |
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
import pinecone | |
import asyncio | |
from langchain.document_loaders.sitemap import SitemapLoader | |
#Function to fetch data from website | |
#https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/sitemap | |
def get_website_data(sitemap_url): | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
loader = SitemapLoader( | |
sitemap_url | |
) | |
docs = loader.load() | |
return docs | |
#Function to split data into smaller chunks | |
def split_data(docs): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size = 1000, | |
chunk_overlap = 200, | |
length_function = len, | |
) | |
docs_chunks = text_splitter.split_documents(docs) | |
return docs_chunks | |
#Function to create embeddings instance | |
def create_embeddings(): | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
return embeddings | |
#Function to push data to Pinecone | |
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs): | |
pinecone.init( | |
api_key=pinecone_apikey, | |
environment=pinecone_environment | |
) | |
index_name = pinecone_index_name | |
index = Pinecone.from_documents(docs, embeddings, index_name=index_name) | |
return index | |
#Function to pull index data from Pinecone | |
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings): | |
pinecone.init( | |
api_key=pinecone_apikey, | |
environment=pinecone_environment | |
) | |
index_name = pinecone_index_name | |
index = Pinecone.from_existing_index(index_name, embeddings) | |
return index | |
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index | |
def get_similar_docs(index,query,k=2): | |
similar_docs = index.similarity_search(query, k=k) | |
return similar_docs | |