Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +1 -0
- app.py +86 -0
- image_generator.py +72 -0
- llm_models.py +128 -0
- requirements.txt +6 -0
- تطبيق الراوي.pdf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
تطبيق[[:space:]]الراوي.pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llm_models import get_text_image_pairs
|
3 |
+
import time
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
title_markdown = ("""
|
7 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; direction: rtl;">
|
8 |
+
<img src="https://s11.ax1x.com/2023/12/28/piqvDMV.png" alt="MoE-LLaVA🚀" style="max-width: 120px; height: auto; margin-right: 20px;">
|
9 |
+
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center;">
|
10 |
+
<h1 style="margin: 0; font-size: 4em;">الراوي</h1>
|
11 |
+
<br>
|
12 |
+
<h2 style="margin: 0; font-size: 1.5em;">صانع القصص بالذكاء الاصطناعي التوليدي</h2>
|
13 |
+
</div>
|
14 |
+
</div>
|
15 |
+
""")
|
16 |
+
|
17 |
+
def get_text_images_values(k, input_prompt):
|
18 |
+
|
19 |
+
pages = int(k)
|
20 |
+
|
21 |
+
segments_list, images_names = get_text_image_pairs(pages,input_prompt)
|
22 |
+
return segments_list, images_names
|
23 |
+
|
24 |
+
css = """
|
25 |
+
.gradio-container {direction: rtl}
|
26 |
+
.gradio-container-4-18-0 .prose h1 {direction: rtl};
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
with gr.Blocks(css=css) as demo:
|
31 |
+
|
32 |
+
gr.Markdown(title_markdown)
|
33 |
+
|
34 |
+
prompt = gr.Textbox(label="معلومات بسيطة عن القصة",
|
35 |
+
info="أدخل بعض المعلومات عن القصة، مثلاً: خالد صبي في الرابعة من عمره، ويحب أن يصبح طياراً في المستقبل",
|
36 |
+
placeholder="خالد صبي في الرابعة من عمره، ويحب أن يصبح طياراً في المستقبل",
|
37 |
+
text_align="right",
|
38 |
+
rtl=True,
|
39 |
+
elem_classes="rtl-textbox",
|
40 |
+
elem_id="rtl-textbox")
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
|
45 |
+
|
46 |
+
max_textboxes = 10 # Define the max number of textboxed, so we will add the max number of textboxes and images to the layout
|
47 |
+
|
48 |
+
def variable_outputs(k, segments_list):
|
49 |
+
k = int(k)
|
50 |
+
return [gr.Textbox(label= f"الصفحة رقم {i+1}", value=item, text_align="right", visible=True) for i, item in enumerate(segments_list)] + [gr.Textbox(visible=False, text_align="right", rtl=True)]*(max_textboxes-k)
|
51 |
+
|
52 |
+
def variable_outputs_image(k,images_names):
|
53 |
+
k = int(k)
|
54 |
+
return [gr.Image(value=item, scale=1, visible=True) for item in images_names] + [gr.Image(scale=1,visible=False)]*(max_textboxes-k)
|
55 |
+
|
56 |
+
with gr.Column():
|
57 |
+
s = gr.Slider(1, max_textboxes, value=1, step=1, info="أقصى عدد صفحات يمكن توليده هو 10 صفحات",label="كم عدد صفحات القصة التي تريدها؟")
|
58 |
+
textboxes = []
|
59 |
+
imageboxes = []
|
60 |
+
for i in tqdm(range(max_textboxes)):
|
61 |
+
with gr.Row():
|
62 |
+
i_t = gr.Image(visible=False)
|
63 |
+
t = gr.Textbox(visible=False)
|
64 |
+
imageboxes.append(i_t)
|
65 |
+
textboxes.append(t)
|
66 |
+
|
67 |
+
segment_list = gr.JSON(value=[],visible=False)
|
68 |
+
images_list = gr.JSON(value=[], visible=False)
|
69 |
+
|
70 |
+
submit = gr.Button(value="أنشئ القصة الآن")
|
71 |
+
|
72 |
+
submit.click(
|
73 |
+
fn=get_text_images_values,
|
74 |
+
inputs=[s,prompt],
|
75 |
+
outputs=[segment_list, images_list]
|
76 |
+
).then(
|
77 |
+
fn=variable_outputs,
|
78 |
+
inputs=[s, segment_list],
|
79 |
+
outputs=textboxes,
|
80 |
+
).then(
|
81 |
+
fn=variable_outputs_image,
|
82 |
+
inputs=[s, images_list],
|
83 |
+
outputs=imageboxes,
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.launch()
|
image_generator.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import warnings
|
4 |
+
from PIL import Image
|
5 |
+
from stability_sdk import client
|
6 |
+
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation
|
7 |
+
import uuid
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Our Host URL should not be prepended with "https" nor should it have a trailing slash.
|
12 |
+
os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443'
|
13 |
+
|
14 |
+
# Sign up for an account at the following link to get an API Key.
|
15 |
+
# https://platform.stability.ai/
|
16 |
+
|
17 |
+
# Click on the following link once you have created an account to be taken to your API Key.
|
18 |
+
# https://platform.stability.ai/account/keys
|
19 |
+
|
20 |
+
# Paste your API Key below.
|
21 |
+
|
22 |
+
os.environ['STABILITY_KEY'] = 'key_here'
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Set up our connection to the API.
|
27 |
+
stability_api = client.StabilityInference(
|
28 |
+
key=os.environ['STABILITY_KEY'], # API Key reference.
|
29 |
+
verbose=True, # Print debug messages.
|
30 |
+
engine="stable-diffusion-xl-1024-v1-0", # Set the engine to use for generation.
|
31 |
+
# Check out the following link for a list of available engines: https://platform.stability.ai/docs/features/api-parameters#engine
|
32 |
+
)
|
33 |
+
|
34 |
+
def get_image(prompt):
|
35 |
+
# Set up our initial generation parameters.
|
36 |
+
answers = stability_api.generate(
|
37 |
+
prompt=prompt, # The prompt we want to generate an image from.
|
38 |
+
seed=4253978046, # If a seed is provided, the resulting generated image will be deterministic.
|
39 |
+
# What this means is that as long as all generation parameters remain the same, you can always recall the same image simply by generating it again.
|
40 |
+
# Note: This isn't quite the case for Clip Guided generations, which we'll tackle in a future example notebook.
|
41 |
+
steps=30, # Amount of inference steps performed on image generation. Defaults to 30.
|
42 |
+
cfg_scale=8.0, # Influences how strongly your generation is guided to match your prompt.
|
43 |
+
# Setting this value higher increases the strength in which it tries to match your prompt.
|
44 |
+
# Defaults to 7.0 if not specified.
|
45 |
+
width=512, # Generation width, defaults to 512 if not included.
|
46 |
+
height=512, # Generation height, defaults to 512 if not included.
|
47 |
+
samples=1, # Number of images to generate, defaults to 1 if not included.
|
48 |
+
sampler=generation.SAMPLER_K_DPMPP_2M # Choose which sampler we want to denoise our generation with.
|
49 |
+
# Defaults to k_dpmpp_2m if not specified. Clip Guidance only supports ancestral samplers.
|
50 |
+
# (Available Samplers: ddim, plms, k_euler, k_euler_ancestral, k_heun, k_dpm_2, k_dpm_2_ancestral, k_dpmpp_2s_ancestral, k_lms, k_dpmpp_2m, k_dpmpp_sde)
|
51 |
+
)
|
52 |
+
|
53 |
+
# print("Finish the prompt")
|
54 |
+
# Set up our warning to print to the console if the adult content classifier is tripped.
|
55 |
+
# If adult content classifier is not tripped, save generated images.
|
56 |
+
for resp in answers:
|
57 |
+
for artifact in resp.artifacts:
|
58 |
+
# if artifact.finish_reason == generation.FILTER:
|
59 |
+
# print(artifact.finish_reason)
|
60 |
+
# print("Warning")
|
61 |
+
# warnings.warn(
|
62 |
+
# "Your request activated the API's safety filters and could not be processed."
|
63 |
+
# "Please modify the prompt and try again.")
|
64 |
+
|
65 |
+
if artifact.type == generation.ARTIFACT_IMAGE:
|
66 |
+
img = Image.open(io.BytesIO(artifact.binary))
|
67 |
+
unique_filename = str(uuid.uuid4())
|
68 |
+
|
69 |
+
img.save(str(unique_filename)+ ".png") # Save our generated images with their seed number as the filename.
|
70 |
+
|
71 |
+
return unique_filename + ".png"
|
72 |
+
|
llm_models.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from openai import OpenAI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
from image_generator import get_image
|
6 |
+
|
7 |
+
class StepByStepAIResponse(BaseModel):
|
8 |
+
title: str
|
9 |
+
story_segments: List[str]
|
10 |
+
image_prompts: List[str]
|
11 |
+
|
12 |
+
class GetTranslation(BaseModel):
|
13 |
+
translated_text: List[str]
|
14 |
+
|
15 |
+
|
16 |
+
client = OpenAI(api_key="key_here")
|
17 |
+
|
18 |
+
|
19 |
+
def generate_story(k, prompt):
|
20 |
+
""" Generate a story with k segments and initial prompt"""
|
21 |
+
|
22 |
+
response = client.chat.completions.create(
|
23 |
+
model="gpt-4-turbo-preview",
|
24 |
+
messages=[
|
25 |
+
{
|
26 |
+
"role": "system",
|
27 |
+
"content": f"""
|
28 |
+
Your expertise lies in weaving captivating narratives for children, complemented by images that vividly bring each tale to life. Embark on a creative endeavor to construct a story segmented into {k} distinct chapters, each a cornerstone of an enchanting journey for a young audience.
|
29 |
+
The input prompt will be on Arabic, but the output must be in English.
|
30 |
+
|
31 |
+
**Task Overview**:
|
32 |
+
|
33 |
+
1. **Story Development**:
|
34 |
+
- Craft a narrative divided into {k} parts, with a strict 50-word limit for each.
|
35 |
+
- Start with an engaging introduction that lays the foundation for the adventure.
|
36 |
+
- Ensure each part naturally progresses from the previous, crafting a fluid story that escalates to an exhilarating climax.
|
37 |
+
- Wrap up the narrative with a gratifying conclusion that ties all story threads together.
|
38 |
+
- Keep character continuity intact across the story, with consistent presence from beginning to end.
|
39 |
+
- You must describe the characters in details in every image prompt.
|
40 |
+
- Use language and themes that are child-friendly, imbued with wonder, and easy to visualize.
|
41 |
+
- The story will talk about {prompt}
|
42 |
+
|
43 |
+
2. **Image Generation Instructions for Image Models**:
|
44 |
+
- For every story part, create a comprehensive prompt for generating an image that encapsulates the scene's essence. Each prompt should:
|
45 |
+
- Offer a detailed description of the scene, characters, and critical elements, providing enough specificity for the image model to create a consistent and coherent visual.
|
46 |
+
- Request the images be in an anime style to ensure visual consistency throughout.
|
47 |
+
- Given the image model's isolated processing, reintroduce characters, settings, and pivotal details in each prompt to maintain narrative and visual continuity.
|
48 |
+
- Focus on visual storytelling components that enhance the story segments, steering clear of direct text inclusion in the images.
|
49 |
+
|
50 |
+
**Key Points**:
|
51 |
+
- Due to the image model's lack of recall, stress the need for self-contained prompts that reintroduce crucial elements each time. This strategy guarantees that, although generated independently, each image mirrors a continuous and cohesive visual story.
|
52 |
+
|
53 |
+
Through your skill in melding textual and visual storytelling, you will breathe life into this magical tale, offering young readers a journey to remember through both prose and illustration.
|
54 |
+
|
55 |
+
"""
|
56 |
+
},
|
57 |
+
],
|
58 |
+
functions=[
|
59 |
+
{
|
60 |
+
"name": "get_story_segments_and_image_prompts",
|
61 |
+
"description": "Get user answer in series of segment and image prompts",
|
62 |
+
"parameters": StepByStepAIResponse.model_json_schema(),
|
63 |
+
}
|
64 |
+
],
|
65 |
+
function_call={"name": "get_story_segments_and_image_prompts"}, # Corrected to match the defined function name
|
66 |
+
temperature=1,
|
67 |
+
max_tokens=1000,
|
68 |
+
top_p=1,
|
69 |
+
frequency_penalty=0,
|
70 |
+
presence_penalty=0
|
71 |
+
)
|
72 |
+
|
73 |
+
output = json.loads(response.choices[0].message.function_call.arguments)
|
74 |
+
|
75 |
+
sbs = StepByStepAIResponse(**output)
|
76 |
+
|
77 |
+
return sbs
|
78 |
+
|
79 |
+
def get_Arabic_translation(story_segments):
|
80 |
+
|
81 |
+
response = client.chat.completions.create(
|
82 |
+
model="gpt-4-turbo-preview",
|
83 |
+
messages=[
|
84 |
+
{
|
85 |
+
"role": "system",
|
86 |
+
"content":
|
87 |
+
|
88 |
+
f"""
|
89 |
+
You are an expert translator of text from English to Arabic.
|
90 |
+
|
91 |
+
On the following, you can find the input text that you need to translate to Arabic:
|
92 |
+
{story_segments}
|
93 |
+
|
94 |
+
Translate it from English to Arabic.
|
95 |
+
|
96 |
+
"""
|
97 |
+
},
|
98 |
+
],
|
99 |
+
functions=[
|
100 |
+
{
|
101 |
+
"name": "translate_text_from_english_to_arabic",
|
102 |
+
"description": "Translate the text from English to Arabic.",
|
103 |
+
"parameters": GetTranslation.model_json_schema(),
|
104 |
+
}
|
105 |
+
],
|
106 |
+
function_call={"name": "translate_text_from_english_to_arabic"}, # Corrected to match the defined function name
|
107 |
+
temperature=1,
|
108 |
+
max_tokens=1000,
|
109 |
+
top_p=1,
|
110 |
+
frequency_penalty=0,
|
111 |
+
presence_penalty=0
|
112 |
+
)
|
113 |
+
|
114 |
+
output = json.loads(response.choices[0].message.function_call.arguments)
|
115 |
+
|
116 |
+
sbs = GetTranslation(**output)
|
117 |
+
|
118 |
+
return sbs
|
119 |
+
|
120 |
+
def get_text_image_pairs(k, prompt):
|
121 |
+
|
122 |
+
describtion = generate_story(k, prompt)
|
123 |
+
|
124 |
+
segements_translation = get_Arabic_translation(describtion.story_segments)
|
125 |
+
|
126 |
+
images_names = [get_image(itm) for itm in describtion.image_prompts]
|
127 |
+
|
128 |
+
return (segements_translation.translated_text, images_names)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.18.0
|
2 |
+
gradio_client==0.10.0
|
3 |
+
openai==1.12.0
|
4 |
+
pydantic==2.6.1
|
5 |
+
rich==13.7.0
|
6 |
+
stability-sdk==0.8.5
|
تطبيق الراوي.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:509a398d5629418376c7797bd4ffc369cc8c428b78ced09ebcc6b28462bbce24
|
3 |
+
size 4607682
|