Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import torch | |
from train_get2_8_init import GPT, GPTConfig, generate_text, TrainingConfig | |
from huggingface_hub import hf_hub_download | |
from torch.serialization import add_safe_globals | |
# Add GPTConfig to safe globals | |
add_safe_globals([GPTConfig]) | |
def load_trained_model(): | |
config = TrainingConfig() | |
model_config = GPTConfig( | |
block_size=config.block_size, | |
n_layer=config.n_layer, | |
n_head=config.n_head, | |
n_embd=config.n_embd, | |
dropout=config.dropout | |
) | |
model = GPT(model_config) | |
model_path = hf_hub_download( | |
repo_id="padmanabhbosamia/Short_Shakesphere", | |
filename="best_model_compressed.pt", | |
token=os.getenv('HF_TOKEN') | |
) | |
checkpoint = torch.load(model_path, map_location=config.device) | |
model.load_state_dict(checkpoint['model_state_dict']) | |
model.to(config.device) | |
model.eval() | |
return model | |
def create_gradio_interface(): | |
model = load_trained_model() | |
def predict(prompt, max_length, temperature=0.7): | |
return generate_text(model, prompt, max_length, temperature) | |
interface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox( | |
lines=3, | |
label="Enter your prompt", | |
placeholder="Start typing here..." | |
), | |
gr.Slider( | |
minimum=10, | |
maximum=500, | |
value=100, | |
step=10, | |
label="Maximum Length" | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature (Higher = more creative)" | |
) | |
], | |
outputs=gr.Textbox(lines=5, label="Generated Text"), | |
title="Custom GPT Text Generator (124M) based on Shakespeare", | |
description="A GPT-style language model trained on custom data by Shakespeare with 124M parameters" | |
) | |
return interface | |
# For Hugging Face Spaces | |
if __name__ == "__main__": | |
interface = create_gradio_interface() | |
interface.launch() |