Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pickle | |
import numpy as np | |
from sklearn.tree import DecisionTreeRegressor | |
def load_model(): | |
with open('saved_data.pkl', 'rb') as file: | |
data = pickle.load(file) | |
return data | |
data = load_model() | |
regressor = data["model"] | |
torf = ( | |
"True", | |
"False", | |
) | |
def show_predict_page(): | |
st.title("Pokemon Attack Prediction Based on Other Stats") | |
st.write(""" ### Enter your pokemon's stats to get the predicted attack stat""") | |
total_points = st.slider("total points", 0, 720, 350) | |
HP = st.slider("Health Points", 0, 255, 120) | |
Defense = st.slider("Defense", 0, 230, 50) | |
Generation = st.slider("Generation", 1, 6, 1) | |
Legendary = st.selectbox("Is Legendary", torf) | |
ok = st.button("Calculate Attack") | |
if ok: | |
X = np.array([[total_points, HP, Defense, Generation, int(bool(Legendary))]]) | |
X = X.astype(int) | |
attack = regressor.predict(X) | |
st.subheader(f"YOUR POKEMON'S ESTIMATED ATTACK IS {attack[0]}") | |