Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch_scatter | |
class LayerNorm1D(nn.Module): | |
def __init__(self, dim): | |
super(LayerNorm1D, self).__init__() | |
self.norm = nn.LayerNorm(dim, eps=1e-4) | |
def forward(self, x): | |
return self.norm(x.transpose(1,2)).transpose(1,2) | |
class GatedResidual(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gate = nn.Sequential( | |
nn.Linear(dim, dim), | |
nn.Sigmoid()) | |
self.res = nn.Sequential( | |
nn.Linear(dim, dim), | |
nn.ReLU(inplace=True), | |
nn.Linear(dim, dim)) | |
def forward(self, x): | |
return x + self.gate(x) * self.res(x) | |
class SoftAgg(nn.Module): | |
def __init__(self, dim=512, expand=True): | |
super(SoftAgg, self).__init__() | |
self.dim = dim | |
self.expand = expand | |
self.f = nn.Linear(self.dim, self.dim) | |
self.g = nn.Linear(self.dim, self.dim) | |
self.h = nn.Linear(self.dim, self.dim) | |
def forward(self, x, ix): | |
_, jx = torch.unique(ix, return_inverse=True) | |
w = torch_scatter.scatter_softmax(self.g(x), jx, dim=1) | |
y = torch_scatter.scatter_sum(self.f(x) * w, jx, dim=1) | |
if self.expand: | |
return self.h(y)[:,jx] | |
return self.h(y) | |
class SoftAggBasic(nn.Module): | |
def __init__(self, dim=512, expand=True): | |
super(SoftAggBasic, self).__init__() | |
self.dim = dim | |
self.expand = expand | |
self.f = nn.Linear(self.dim, self.dim) | |
self.g = nn.Linear(self.dim, 1) | |
self.h = nn.Linear(self.dim, self.dim) | |
def forward(self, x, ix): | |
_, jx = torch.unique(ix, return_inverse=True) | |
w = torch_scatter.scatter_softmax(self.g(x), jx, dim=1) | |
y = torch_scatter.scatter_sum(self.f(x) * w, jx, dim=1) | |
if self.expand: | |
return self.h(y)[:,jx] | |
return self.h(y) | |
### Gradient Clipping and Zeroing Operations ### | |
GRAD_CLIP = 0.1 | |
class GradClip(torch.autograd.Function): | |
def forward(ctx, x): | |
return x | |
def backward(ctx, grad_x): | |
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x) | |
return grad_x.clamp(min=-0.01, max=0.01) | |
class GradientClip(nn.Module): | |
def __init__(self): | |
super(GradientClip, self).__init__() | |
def forward(self, x): | |
return GradClip.apply(x) | |
class GradZero(torch.autograd.Function): | |
def forward(ctx, x): | |
return x | |
def backward(ctx, grad_x): | |
grad_x = torch.where(torch.isnan(grad_x), torch.zeros_like(grad_x), grad_x) | |
grad_x = torch.where(torch.abs(grad_x) > GRAD_CLIP, torch.zeros_like(grad_x), grad_x) | |
return grad_x | |
class GradientZero(nn.Module): | |
def __init__(self): | |
super(GradientZero, self).__init__() | |
def forward(self, x): | |
return GradZero.apply(x) | |
class GradMag(torch.autograd.Function): | |
def forward(ctx, x): | |
return x | |
def backward(ctx, grad_x): | |
print(grad_x.abs().mean()) | |
return grad_x | |