Spaces:
Build error
Build error
pablorodriper
commited on
Commit
·
9b2dc59
1
Parent(s):
33f824c
Upload 2 files
Browse files- app.py +39 -16
- predict.py +54 -0
app.py
CHANGED
@@ -1,25 +1,48 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
from huggingface_hub import from_pretrained_keras
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
fn = infer,
|
18 |
-
inputs = "video",
|
19 |
-
outputs = "number",
|
20 |
-
description = description,
|
21 |
-
title = title,
|
22 |
-
article = article
|
23 |
-
)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import tensorflow as tf
|
5 |
from huggingface_hub import from_pretrained_keras
|
6 |
|
7 |
+
from predict import predict_label
|
8 |
+
|
9 |
+
##Create list of examples to be loaded
|
10 |
+
example_list = glob.glob("examples/*")
|
11 |
+
example_list = list(map(lambda el:[el], example_list))
|
12 |
+
|
13 |
+
demo = gr.Blocks()
|
14 |
+
|
15 |
+
with demo:
|
16 |
+
gr.Markdown("# **<p align='center'>Video Vision Transformer on medmnist</p>**")
|
17 |
+
|
18 |
+
with gr.Tabs():
|
19 |
+
with gr.TabItem("Upload & Predict"):
|
20 |
+
with gr.Box():
|
21 |
+
with gr.Row():
|
22 |
+
input_video = gr.Video(label="Input Video", show_label=True)
|
23 |
+
output_label = gr.Label(label="Model Output", show_label=True)
|
24 |
+
|
25 |
+
gr.Markdown("**Predict**")
|
26 |
+
|
27 |
+
with gr.Box():
|
28 |
+
with gr.Row():
|
29 |
+
submit_button = gr.Button("Submit")
|
30 |
|
31 |
+
gr.Markdown("Examples")
|
32 |
+
gr.Markdown("The model is trained to classify videos belonging to the following classes: liver, kidney-right, kidney-left, femur-right, femur-left, bladder, heart, lung-right, lung-left, spleen, pancreas")
|
33 |
|
34 |
+
with gr.Column():
|
35 |
+
gr.Examples(example_list, [input_video], [output_label], predict_label, cache_examples=True)
|
36 |
|
37 |
+
submit_button.click(predict_label, inputs=input_video, outputs=output_label)
|
38 |
|
39 |
+
gr.Markdown('\n Demo created by: <a href=\"https://huggingface.co/pablorodriper\"> Pablo Rodríguez</a> Based on the Keras example by <a href=\"https://keras.io/examples/vision/vivit/\">Aritra Roy Gosthipaty and Ayush Thakur</a>')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
demo.launch
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
predict.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
# import imageio
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from huggingface_hub import from_pretrained_keras
|
6 |
+
from tensorflow.keras.optimizers import Adam
|
7 |
+
|
8 |
+
from .constants import LEARNING_RATE
|
9 |
+
|
10 |
+
|
11 |
+
def predict_label(path):
|
12 |
+
frames = load_video(path)
|
13 |
+
model = get_model()
|
14 |
+
prediction = model.predict(tf.expand_dims(example, axis=0))[0]
|
15 |
+
label = np.argmax(pred, axis=0)
|
16 |
+
|
17 |
+
return label
|
18 |
+
|
19 |
+
|
20 |
+
def load_video(path):
|
21 |
+
"""
|
22 |
+
Load video from path and return a list of frames.
|
23 |
+
The video is converted to grayscale because it is the format expected by the model.
|
24 |
+
"""
|
25 |
+
cap = cv2.VideoCapture(path)
|
26 |
+
frames = []
|
27 |
+
try:
|
28 |
+
while True:
|
29 |
+
ret, frame = cap.read()
|
30 |
+
if not ret:
|
31 |
+
break
|
32 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
33 |
+
frames.append(frame)
|
34 |
+
finally:
|
35 |
+
cap.release()
|
36 |
+
return np.array(frames)
|
37 |
+
|
38 |
+
|
39 |
+
def get_model():
|
40 |
+
"""
|
41 |
+
Download the model from the Hugging Face Hub and compile it.
|
42 |
+
"""
|
43 |
+
model = from_pretrained_keras("pablorodriper/video-vision-transformer")
|
44 |
+
|
45 |
+
model.compile(
|
46 |
+
optimizer=Adam(learning_rate=LEARNING_RATE),
|
47 |
+
loss="sparse_categorical_crossentropy",
|
48 |
+
# metrics=[
|
49 |
+
# keras.metrics.SparseCategoricalAccuracy(name="accuracy"),
|
50 |
+
# keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"),
|
51 |
+
# ],
|
52 |
+
)
|
53 |
+
|
54 |
+
return model
|