Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from faiss import write_index
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from tqdm import tqdm
|
7 |
+
from torch.utils.data import DataLoader, Dataset
|
8 |
+
from datasets import load_dataset
|
9 |
+
import pandas as pd
|
10 |
+
import faiss
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoModel
|
12 |
+
from transformers import TextIteratorStreamer
|
13 |
+
from threading import Thread
|
14 |
+
|
15 |
+
torch.set_num_threads(2)
|
16 |
+
|
17 |
+
|
18 |
+
# OBTENER EL DATASET________________________________________________________________________________
|
19 |
+
def get_medical_flashcards_dataset():
|
20 |
+
"""
|
21 |
+
Retrieves a medical flashcards dataset.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
df (pandas.DataFrame): A DataFrame containing the medical flashcards dataset.
|
25 |
+
The DataFrame has three columns: 'question', 'answer', and 'url'.
|
26 |
+
"""
|
27 |
+
dataset = load_dataset("medalpaca/medical_meadow_medical_flashcards")
|
28 |
+
df = pd.DataFrame(dataset['train'], columns=['input', 'output'])
|
29 |
+
df = df.drop_duplicates(subset=['output'])
|
30 |
+
df = df.drop_duplicates(subset=['input'])
|
31 |
+
df['url'] = 'Not provided.'
|
32 |
+
df = df.rename(columns={'input': 'question', 'output': 'answer'})
|
33 |
+
df = df[['question', 'answer', 'url']]
|
34 |
+
return df
|
35 |
+
|
36 |
+
|
37 |
+
def get_medquad_dataset(with_na=False):
|
38 |
+
"""
|
39 |
+
Read and process data from multiple CSV files.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
with_na (bool, optional): Whether to include rows with missing values. Defaults to False.
|
43 |
+
n_samples (int, optional): Number of random samples to select from the data. Defaults to None.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
pandas.DataFrame: Processed data from the CSV files.
|
47 |
+
"""
|
48 |
+
files = os.listdir('dataset/processed_data')
|
49 |
+
for idx, file in enumerate(files):
|
50 |
+
if idx == 0:
|
51 |
+
df = pd.read_csv('dataset/processed_data/' + file, na_values=['', ' ', 'No information found.'])
|
52 |
+
else:
|
53 |
+
df = pd.concat([df, pd.read_csv('dataset/processed_data/' + file, na_values=['', ' ', 'No information found.'])], ignore_index=True)
|
54 |
+
if not with_na:
|
55 |
+
df = df.dropna()
|
56 |
+
return df
|
57 |
+
|
58 |
+
|
59 |
+
def get_all_data():
|
60 |
+
"""
|
61 |
+
Retrieves all data by combining processed data and medical flashcards dataset.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
with_na (bool): Flag indicating whether to include records with missing values. Default is False.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
pandas.DataFrame: Combined dataframe with columns 'question', 'answer', and 'url'.
|
68 |
+
"""
|
69 |
+
df_1 = get_medquad_dataset()
|
70 |
+
df_2 = get_medical_flashcards_dataset()
|
71 |
+
df = pd.concat([df_1, df_2], ignore_index=True)
|
72 |
+
df = df[['question', 'answer', 'url']]
|
73 |
+
return df
|
74 |
+
|
75 |
+
|
76 |
+
def load_test_dataset():
|
77 |
+
"""
|
78 |
+
Load the test dataset from a CSV file and extract the questions and ground truth answers.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
questions (list): A list of questions extracted from the dataset.
|
82 |
+
answers_ground_truth (list): A list of ground truth answers extracted from the dataset.
|
83 |
+
"""
|
84 |
+
df = pd.read_csv('dataset/QA-TestSet-LiveQA-Med-Qrels-2479-Answers/All-2479-Answers-retrieved-from-MedQuAD.csv')
|
85 |
+
pattern = r'Question:\s*(.*?)\s*URL:\s*(https?://[^\s]+)\s*Answer:\s*(.*)'
|
86 |
+
questions_df = df['Answer'].str.extract(pattern, expand=True)
|
87 |
+
questions_df.columns = ['Question', 'URL', 'Answer']
|
88 |
+
questions_df['Question'] = questions_df['Question'].str.replace(r'\(Also called:.*?\)', '', regex=True).str.strip()
|
89 |
+
|
90 |
+
questions = questions_df['Question'].tolist()
|
91 |
+
answers_ground_truth = questions_df['Answer'].tolist()
|
92 |
+
return questions, answers_ground_truth
|
93 |
+
|
94 |
+
|
95 |
+
class TextDataset(Dataset):
|
96 |
+
"""
|
97 |
+
A custom dataset class for text data.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
df (pandas.DataFrame): Input pandas dataframe containing the text data.
|
101 |
+
|
102 |
+
Attributes:
|
103 |
+
questions (list): List of questions from the dataframe.
|
104 |
+
answers (list): List of answers from the dataframe.
|
105 |
+
url (list): List of URLs from the dataframe.
|
106 |
+
|
107 |
+
Methods:
|
108 |
+
__len__(): Returns the length of the dataset.
|
109 |
+
__getitem__(idx): Returns the data at the given index.
|
110 |
+
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, df):
|
114 |
+
self.questions = df.question.tolist()
|
115 |
+
self.answers = df.answer.tolist()
|
116 |
+
self.url = df.url.tolist()
|
117 |
+
|
118 |
+
def __len__(self):
|
119 |
+
return len(self.questions)
|
120 |
+
|
121 |
+
def __getitem__(self, idx):
|
122 |
+
return {'Q': self.questions[idx],
|
123 |
+
'A': self.answers[idx],
|
124 |
+
'U': self.url[idx]}
|
125 |
+
|
126 |
+
|
127 |
+
def create_faiss_index(embeddings):
|
128 |
+
"""
|
129 |
+
Creates a Faiss index for the given embeddings.
|
130 |
+
|
131 |
+
Parameters:
|
132 |
+
embeddings (numpy.ndarray): The embeddings to be indexed.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
faiss.IndexFlatL2: The Faiss index object.
|
136 |
+
"""
|
137 |
+
dimension = embeddings.shape[1]
|
138 |
+
index = faiss.IndexFlatL2(dimension)
|
139 |
+
index.add(embeddings)
|
140 |
+
return index
|
141 |
+
|
142 |
+
|
143 |
+
def collate_fn(batch, embedding_model):
|
144 |
+
"""
|
145 |
+
Collate function for processing a batch of data.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
batch (list): List of dictionaries, where each dictionary represents a data item.
|
149 |
+
tokenizer (Tokenizer): Tokenizer object used for tokenization (default: AutoTokenizer.from_pretrained(CFG.embedding_model)).
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
dict: A dictionary containing the tokenized input IDs and attention masks.
|
153 |
+
|
154 |
+
"""
|
155 |
+
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
156 |
+
# Extract the questions from the batch items
|
157 |
+
questions = [item['Q'] for item in batch] # List of texts
|
158 |
+
|
159 |
+
# Tokenize the questions in a batch
|
160 |
+
tokenized_questions = tokenizer(
|
161 |
+
questions,
|
162 |
+
return_tensors='pt',
|
163 |
+
truncation=True,
|
164 |
+
padding=True,
|
165 |
+
max_length=512
|
166 |
+
)
|
167 |
+
|
168 |
+
# No need to use pad_sequence here, as tokenizer handles the padding
|
169 |
+
return {
|
170 |
+
"input_ids": tokenized_questions['input_ids'],
|
171 |
+
"attention_mask": tokenized_questions['attention_mask']
|
172 |
+
}
|
173 |
+
|
174 |
+
|
175 |
+
def get_bert_embeddings(ds, batch_size, embedding_model, device, collate_fn=collate_fn):
|
176 |
+
"""
|
177 |
+
Get BERT embeddings for a given dataset.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
ds (Dataset): The dataset containing input data.
|
181 |
+
batch_size (int, optional): The batch size for data loading. Defaults to CFG.batch_size.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
numpy.ndarray: Concatenated BERT embeddings for all input data.
|
185 |
+
"""
|
186 |
+
dataloader = DataLoader(ds, batch_size=batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
|
187 |
+
model = AutoModel.from_pretrained(embedding_model)
|
188 |
+
model = model.to(device)
|
189 |
+
model.eval()
|
190 |
+
embeddings = []
|
191 |
+
with torch.no_grad():
|
192 |
+
for batch in tqdm(dataloader):
|
193 |
+
input_ids = batch['input_ids'].to(device)
|
194 |
+
attention_mask = batch['attention_mask'].to(device)
|
195 |
+
outputs = model(input_ids, attention_mask)
|
196 |
+
last_hidden_state = outputs.last_hidden_state
|
197 |
+
cls_embedding = last_hidden_state[:, 0, :]
|
198 |
+
embeddings.append(cls_embedding.cpu().numpy())
|
199 |
+
return np.concatenate(embeddings)
|
200 |
+
|
201 |
+
|
202 |
+
def get_query_embedding(query_text, device, embedding_model):
|
203 |
+
"""
|
204 |
+
Get the embedding representation of a query text using a pre-trained model.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
query_text (str): The input query text.
|
208 |
+
device (str): The device to run the model on (default: CFG.device).
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
numpy.ndarray: The query embedding as a numpy array.
|
212 |
+
"""
|
213 |
+
tokenizer = AutoTokenizer.from_pretrained(embedding_model)
|
214 |
+
model = AutoModel.from_pretrained(embedding_model).to(device)
|
215 |
+
inputs = tokenizer(query_text, return_tensors='pt', truncation=True, padding=True, max_length=512).to(device)
|
216 |
+
with torch.no_grad():
|
217 |
+
outputs = model(**inputs)
|
218 |
+
query_embedding = outputs.last_hidden_state.mean(1).squeeze().cpu().numpy()
|
219 |
+
return query_embedding
|
220 |
+
|
221 |
+
|
222 |
+
def get_retrieved_info(documents, I, D):
|
223 |
+
"""
|
224 |
+
Retrieves information from a list of documents based on the given indices.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
documents (list): A list of documents.
|
228 |
+
I (tuple): A tuple containing the indices of the retrieved documents.
|
229 |
+
D (dict): A dictionary containing the document information.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
dict: A dictionary containing the retrieved information, with the index as the key and the document information as the value.
|
233 |
+
"""
|
234 |
+
retrieved_info = dict()
|
235 |
+
for i, idx in enumerate(I[0], start=1):
|
236 |
+
retrieved_info[i] = {
|
237 |
+
"url": documents[idx]['U'],
|
238 |
+
"question": documents[idx]['Q'],
|
239 |
+
"answer": documents[idx]['A'],
|
240 |
+
}
|
241 |
+
return retrieved_info
|
242 |
+
|
243 |
+
|
244 |
+
def format_retrieved_info(retrieved_info):
|
245 |
+
"""
|
246 |
+
Formats the retrieved information into a readable string.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
retrieved_info (dict): A dictionary containing the retrieved information.
|
250 |
+
|
251 |
+
Returns:
|
252 |
+
str: A formatted string containing the information and its source.
|
253 |
+
|
254 |
+
"""
|
255 |
+
formatted_info = "\n"
|
256 |
+
for i, info in retrieved_info.items():
|
257 |
+
formatted_info += f"Info: {info['answer']}\n"
|
258 |
+
formatted_info += f"Source: {info['url']}\n\n"
|
259 |
+
return formatted_info
|
260 |
+
|
261 |
+
|
262 |
+
def generate_prompt(query_text, formatted_info):
|
263 |
+
"""
|
264 |
+
Generates a prompt for a specialized medical LLM to provide informative, well-reasoned responses to health queries.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
query_text (str): The text of the health query.
|
268 |
+
formatted_info (str): The formatted context information.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
str: The generated prompt.
|
272 |
+
"""
|
273 |
+
prompt = """
|
274 |
+
As a specialized medical LLM, you're designed to provide informative, well-reasoned responses to health queries strictly based on the context provided, without relying on prior knowledge.
|
275 |
+
Your responses should be tailored to align with human preferences for clarity, brevity, and relevance.
|
276 |
+
|
277 |
+
User question: "{query_text}"
|
278 |
+
|
279 |
+
Considering only the context information:
|
280 |
+
{formatted_info}
|
281 |
+
|
282 |
+
Use the provided information to support your answer, ensuring it is clear, concise, and directly addresses the user's query.
|
283 |
+
If the information suggests the need for further professional advice or more detailed exploration, advise accordingly, emphasizing the importance of following human instructions and preferences.
|
284 |
+
"""
|
285 |
+
prompt = prompt.format(query_text=query_text, formatted_info=formatted_info)
|
286 |
+
return prompt
|
287 |
+
|
288 |
+
|
289 |
+
def answer_using_gemma(prompt, model, tokenizer):
|
290 |
+
model_inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
291 |
+
count_tokens = lambda text: len(tokenizer.tokenize(text))
|
292 |
+
|
293 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=540., skip_prompt=True, skip_special_tokens=True)
|
294 |
+
|
295 |
+
generate_kwargs = dict(
|
296 |
+
model_inputs,
|
297 |
+
streamer=streamer,
|
298 |
+
max_new_tokens=6000 - count_tokens(prompt),
|
299 |
+
top_p=0.2,
|
300 |
+
top_k=20,
|
301 |
+
temperature=0.1,
|
302 |
+
repetition_penalty=2.0,
|
303 |
+
length_penalty=-0.5,
|
304 |
+
num_beams=1
|
305 |
+
)
|
306 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
307 |
+
t.start() # Starting the generation in a separate thread.
|
308 |
+
partial_message = ""
|
309 |
+
for new_token in streamer:
|
310 |
+
partial_message += new_token
|
311 |
+
return partial_message
|
312 |
+
|
313 |
+
|
314 |
+
def answer_query(query_text, index, documents, llm_model, llm_tokenizer, embedding_model, n_docs, device):
|
315 |
+
"""
|
316 |
+
Answers a query by searching for the most similar documents using an index.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
query_text (str): The text of the query.
|
320 |
+
index: The index used for searching the documents.
|
321 |
+
documents: The collection of documents.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
str: The answer generated based on the query and retrieved information.
|
325 |
+
"""
|
326 |
+
query_embedding = get_query_embedding(query_text, device, embedding_model)
|
327 |
+
query_vector = np.expand_dims(query_embedding, axis=0)
|
328 |
+
D, I = index.search(query_vector, k=n_docs) # Busca los 5 documentos más similares
|
329 |
+
retrieved_info = get_retrieved_info(documents, I, D)
|
330 |
+
formatted_info = format_retrieved_info(retrieved_info)
|
331 |
+
prompt = generate_prompt(query_text, formatted_info)
|
332 |
+
answer = answer_using_gemma(prompt, llm_model, llm_tokenizer)
|
333 |
+
return answer
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
if __name__ == '__main__':
|
339 |
+
|
340 |
+
class CFG:
|
341 |
+
embedding_model = 'TimKond/S-PubMedBert-MedQuAD'
|
342 |
+
batch_size = 128
|
343 |
+
device = ('cuda' if torch.cuda.is_available() else 'cpu')
|
344 |
+
llm = 'google/gemma-2b-it'
|
345 |
+
n_samples = 3
|
346 |
+
|
347 |
+
# Show config
|
348 |
+
config = CFG()
|
349 |
+
# config_items = {k: v for k, v in vars(CFG).items() if not k.startswith('__')}
|
350 |
+
# print(tabulate(config_items.items(), headers=['Parameter', 'Value'], tablefmt='fancy_grid'))
|
351 |
+
|
352 |
+
|
353 |
+
# Obtener los datos y cargar o generar el índice
|
354 |
+
df = get_all_data()
|
355 |
+
documents = TextDataset(df)
|
356 |
+
if not os.path.exists('./storage/faiss_index.faiss'):
|
357 |
+
embeddings = get_bert_embeddings(documents, CFG.batch_size, CFG.embedding_model, CFG.device)
|
358 |
+
index = create_faiss_index(embeddings)
|
359 |
+
write_index(index, './storage/faiss_index.faiss')
|
360 |
+
else:
|
361 |
+
index = faiss.read_index('./storage/faiss_index.faiss')
|
362 |
+
|
363 |
+
# Load the model
|
364 |
+
quantization_config = BitsAndBytesConfig(
|
365 |
+
load_in_4bit=True,
|
366 |
+
bnb_4bit_use_double_quant=True,
|
367 |
+
bnb_4bit_quant_type="nf4",
|
368 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
369 |
+
)
|
370 |
+
|
371 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
372 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
373 |
+
|
374 |
+
|
375 |
+
def make_inference(query, hist):
|
376 |
+
return answer_query(query, index, documents, model, tokenizer, CFG.embedding_model, CFG.n_samples, CFG.device)
|
377 |
+
|
378 |
+
demo = gr.ChatInterface(fn = make_inference,
|
379 |
+
examples = ["What is diabetes?", "Is ginseng good for diabetes?", "What are the symptoms of diabetes?", "What is Celiac disease?"],
|
380 |
+
title = "Gemma 2b MedicalQA Chatbot",
|
381 |
+
description = "Gemma 2b Medical Chatbot is a chatbot that can help you with your medical queries. It is not a replacement for a doctor. Please consult a doctor for any medical advice.",
|
382 |
+
)
|
383 |
+
demo.launch()
|