pablo commited on
Commit
2e08ffe
1 Parent(s): ede7254
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -13,11 +13,11 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
13
 
14
  # Inpainting pipeline
15
 
16
-
17
  unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
18
  pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
19
 
20
-
21
  # Depth estimation
22
  model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
23
  #model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
@@ -71,7 +71,8 @@ def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, step
71
  scheduler_class_name = scheduler.split("-")[0]
72
 
73
  init_image = cv2.resize(dict["image"], (512, 512))
74
-
 
75
  if (depth is None):
76
  depth_image = estimate_depth(init_image)
77
  else:
@@ -81,7 +82,7 @@ def predict(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, step
81
  scheduler = getattr(diffusers, scheduler_class_name)
82
  pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
83
 
84
- mask = cv2.resize(dict["mask"], (512, 512))
85
  depth_image = depth_image.resize((512, 512))
86
 
87
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
 
13
 
14
  # Inpainting pipeline
15
 
16
+ '''
17
  unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True)
18
  pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device)
19
 
20
+ '''
21
  # Depth estimation
22
  model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
23
  #model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
 
71
  scheduler_class_name = scheduler.split("-")[0]
72
 
73
  init_image = cv2.resize(dict["image"], (512, 512))
74
+ mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0])
75
+
76
  if (depth is None):
77
  depth_image = estimate_depth(init_image)
78
  else:
 
82
  scheduler = getattr(diffusers, scheduler_class_name)
83
  pipe.scheduler = scheduler.from_pretrained("Intel/ldm3d-4c", subfolder="scheduler")
84
 
85
+
86
  depth_image = depth_image.resize((512, 512))
87
 
88
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)