Spaces:
Runtime error
Runtime error
ldm3d-inpainting
/
diffuserslocal
/tests
/pipelines
/stable_diffusion
/test_stable_diffusion_paradigms.py
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMParallelScheduler, | |
DDPMParallelScheduler, | |
StableDiffusionParadigmsPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin | |
enable_full_determinism() | |
class StableDiffusionParadigmsPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = StableDiffusionParadigmsPipeline | |
params = TEXT_TO_IMAGE_PARAMS | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
) | |
scheduler = DDIMParallelScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=512, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "a photograph of an astronaut riding a horse", | |
"generator": generator, | |
"num_inference_steps": 10, | |
"guidance_scale": 6.0, | |
"output_type": "numpy", | |
"parallel": 3, | |
"debug": True, | |
} | |
return inputs | |
def test_stable_diffusion_paradigms_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionParadigmsPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4773, 0.5417, 0.4723, 0.4925, 0.5631, 0.4752, 0.5240, 0.4935, 0.5023]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_paradigms_default_case_ddpm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
torch.manual_seed(0) | |
components["scheduler"] = DDPMParallelScheduler() | |
torch.manual_seed(0) | |
sd_pipe = StableDiffusionParadigmsPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.3573, 0.4420, 0.4960, 0.4799, 0.3796, 0.3879, 0.4819, 0.4365, 0.4468]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
# override to speed the overall test timing up. | |
def test_inference_batch_consistent(self): | |
super().test_inference_batch_consistent(batch_sizes=[1, 2]) | |
# override to speed the overall test timing up. | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=3e-3) | |
def test_stable_diffusion_paradigms_negative_prompt(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionParadigmsPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
negative_prompt = "french fries" | |
output = sd_pipe(**inputs, negative_prompt=negative_prompt) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4771, 0.5420, 0.4683, 0.4918, 0.5636, 0.4725, 0.5230, 0.4923, 0.5015]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
class StableDiffusionParadigmsPipelineSlowTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, seed=0): | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
inputs = { | |
"prompt": "a photograph of an astronaut riding a horse", | |
"generator": generator, | |
"num_inference_steps": 10, | |
"guidance_scale": 7.5, | |
"output_type": "numpy", | |
"parallel": 3, | |
"debug": True, | |
} | |
return inputs | |
def test_stable_diffusion_paradigms_default(self): | |
model_ckpt = "stabilityai/stable-diffusion-2-base" | |
scheduler = DDIMParallelScheduler.from_pretrained(model_ckpt, subfolder="scheduler") | |
pipe = StableDiffusionParadigmsPipeline.from_pretrained(model_ckpt, scheduler=scheduler, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
inputs = self.get_inputs() | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
assert image.shape == (1, 512, 512, 3) | |
expected_slice = np.array([0.9622, 0.9602, 0.9748, 0.9591, 0.9630, 0.9691, 0.9661, 0.9631, 0.9741]) | |
assert np.abs(expected_slice - image_slice).max() < 1e-2 | |