Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import unittest | |
import numpy as np | |
import torch | |
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
load_image, | |
load_numpy, | |
nightly, | |
require_torch_gpu, | |
skip_mps, | |
torch_device, | |
) | |
from ..pipeline_params import IMAGE_INPAINTING_BATCH_PARAMS, IMAGE_INPAINTING_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class RepaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = RePaintPipeline | |
params = IMAGE_INPAINTING_PARAMS - {"width", "height", "guidance_scale"} | |
required_optional_params = PipelineTesterMixin.required_optional_params - { | |
"latents", | |
"num_images_per_prompt", | |
"callback", | |
"callback_steps", | |
} | |
batch_params = IMAGE_INPAINTING_BATCH_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
torch.manual_seed(0) | |
unet = UNet2DModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=("DownBlock2D", "AttnDownBlock2D"), | |
up_block_types=("AttnUpBlock2D", "UpBlock2D"), | |
) | |
scheduler = RePaintScheduler() | |
components = {"unet": unet, "scheduler": scheduler} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image = np.random.RandomState(seed).standard_normal((1, 3, 32, 32)) | |
image = torch.from_numpy(image).to(device=device, dtype=torch.float32) | |
mask = (image > 0).to(device=device, dtype=torch.float32) | |
inputs = { | |
"image": image, | |
"mask_image": mask, | |
"generator": generator, | |
"num_inference_steps": 5, | |
"eta": 0.0, | |
"jump_length": 2, | |
"jump_n_sample": 2, | |
"output_type": "numpy", | |
} | |
return inputs | |
def test_repaint(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = RePaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 32, 32, 3) | |
expected_slice = np.array([1.0000, 0.5426, 0.5497, 0.2200, 1.0000, 1.0000, 0.5623, 1.0000, 0.6274]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_save_load_local(self): | |
return super().test_save_load_local() | |
# RePaint can hardly be made deterministic since the scheduler is currently always | |
# nondeterministic | |
def test_inference_batch_single_identical(self): | |
return super().test_inference_batch_single_identical() | |
def test_dict_tuple_outputs_equivalent(self): | |
return super().test_dict_tuple_outputs_equivalent() | |
def test_save_load_optional_components(self): | |
return super().test_save_load_optional_components() | |
def test_attention_slicing_forward_pass(self): | |
return super().test_attention_slicing_forward_pass() | |
class RepaintPipelineNightlyTests(unittest.TestCase): | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_celebahq(self): | |
original_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" | |
"repaint/celeba_hq_256.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/" | |
"repaint/celeba_hq_256_result.npy" | |
) | |
model_id = "google/ddpm-ema-celebahq-256" | |
unet = UNet2DModel.from_pretrained(model_id) | |
scheduler = RePaintScheduler.from_pretrained(model_id) | |
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device) | |
repaint.set_progress_bar_config(disable=None) | |
repaint.enable_attention_slicing() | |
generator = torch.manual_seed(0) | |
output = repaint( | |
original_image, | |
mask_image, | |
num_inference_steps=250, | |
eta=0.0, | |
jump_length=10, | |
jump_n_sample=10, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (256, 256, 3) | |
assert np.abs(expected_image - image).mean() < 1e-2 | |