Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from diffusers import ( | |
DDIMScheduler, | |
KandinskyV22InpaintPipeline, | |
KandinskyV22PriorPipeline, | |
UNet2DConditionModel, | |
VQModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
load_numpy, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
enable_full_determinism() | |
class Dummies: | |
def text_embedder_hidden_size(self): | |
return 32 | |
def time_input_dim(self): | |
return 32 | |
def block_out_channels_0(self): | |
return self.time_input_dim | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def cross_attention_dim(self): | |
return 32 | |
def dummy_unet(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"in_channels": 9, | |
# Out channels is double in channels because predicts mean and variance | |
"out_channels": 8, | |
"addition_embed_type": "image", | |
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), | |
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), | |
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn", | |
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), | |
"layers_per_block": 1, | |
"encoder_hid_dim": self.text_embedder_hidden_size, | |
"encoder_hid_dim_type": "image_proj", | |
"cross_attention_dim": self.cross_attention_dim, | |
"attention_head_dim": 4, | |
"resnet_time_scale_shift": "scale_shift", | |
"class_embed_type": None, | |
} | |
model = UNet2DConditionModel(**model_kwargs) | |
return model | |
def dummy_movq_kwargs(self): | |
return { | |
"block_out_channels": [32, 64], | |
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], | |
"in_channels": 3, | |
"latent_channels": 4, | |
"layers_per_block": 1, | |
"norm_num_groups": 8, | |
"norm_type": "spatial", | |
"num_vq_embeddings": 12, | |
"out_channels": 3, | |
"up_block_types": [ | |
"AttnUpDecoderBlock2D", | |
"UpDecoderBlock2D", | |
], | |
"vq_embed_dim": 4, | |
} | |
def dummy_movq(self): | |
torch.manual_seed(0) | |
model = VQModel(**self.dummy_movq_kwargs) | |
return model | |
def get_dummy_components(self): | |
unet = self.dummy_unet | |
movq = self.dummy_movq | |
scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_schedule="linear", | |
beta_start=0.00085, | |
beta_end=0.012, | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
prediction_type="epsilon", | |
thresholding=False, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"movq": movq, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device) | |
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to( | |
device | |
) | |
# create init_image | |
image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) | |
# create mask | |
mask = np.zeros((64, 64), dtype=np.float32) | |
mask[:32, :32] = 1 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"image": init_image, | |
"mask_image": mask, | |
"image_embeds": image_embeds, | |
"negative_image_embeds": negative_image_embeds, | |
"generator": generator, | |
"height": 64, | |
"width": 64, | |
"num_inference_steps": 2, | |
"guidance_scale": 4.0, | |
"output_type": "np", | |
} | |
return inputs | |
class KandinskyV22InpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KandinskyV22InpaintPipeline | |
params = ["image_embeds", "negative_image_embeds", "image", "mask_image"] | |
batch_params = [ | |
"image_embeds", | |
"negative_image_embeds", | |
"image", | |
"mask_image", | |
] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"guidance_scale", | |
"num_inference_steps", | |
"return_dict", | |
"guidance_scale", | |
"num_images_per_prompt", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
dummies = Dummies() | |
return dummies.get_dummy_components() | |
def get_dummy_inputs(self, device, seed=0): | |
dummies = Dummies() | |
return dummies.get_dummy_inputs(device=device, seed=seed) | |
def test_kandinsky_inpaint(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array( | |
[0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
def test_float16_inference(self): | |
super().test_float16_inference(expected_max_diff=5e-1) | |
def test_model_cpu_offload_forward_pass(self): | |
super().test_inference_batch_single_identical(expected_max_diff=5e-4) | |
def test_save_load_optional_components(self): | |
super().test_save_load_optional_components(expected_max_difference=5e-4) | |
def test_sequential_cpu_offload_forward_pass(self): | |
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=5e-4) | |
class KandinskyV22InpaintPipelineIntegrationTests(unittest.TestCase): | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_kandinsky_inpaint(self): | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" | |
) | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" | |
) | |
mask = np.zeros((768, 768), dtype=np.float32) | |
mask[:250, 250:-250] = 1 | |
prompt = "a hat" | |
pipe_prior = KandinskyV22PriorPipeline.from_pretrained( | |
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 | |
) | |
pipe_prior.to(torch_device) | |
pipeline = KandinskyV22InpaintPipeline.from_pretrained( | |
"kandinsky-community/kandinsky-2-2-decoder-inpaint", torch_dtype=torch.float16 | |
) | |
pipeline = pipeline.to(torch_device) | |
pipeline.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device="cpu").manual_seed(0) | |
image_emb, zero_image_emb = pipe_prior( | |
prompt, | |
generator=generator, | |
num_inference_steps=5, | |
negative_prompt="", | |
).to_tuple() | |
output = pipeline( | |
image=init_image, | |
mask_image=mask, | |
image_embeds=image_emb, | |
negative_image_embeds=zero_image_emb, | |
generator=generator, | |
num_inference_steps=100, | |
height=768, | |
width=768, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (768, 768, 3) | |
assert_mean_pixel_difference(image, expected_image) | |