Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from torch import nn | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import KandinskyPriorPipeline, PriorTransformer, UnCLIPScheduler | |
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class Dummies: | |
def text_embedder_hidden_size(self): | |
return 32 | |
def time_input_dim(self): | |
return 32 | |
def block_out_channels_0(self): | |
return self.time_input_dim | |
def time_embed_dim(self): | |
return self.time_input_dim * 4 | |
def cross_attention_dim(self): | |
return 100 | |
def dummy_tokenizer(self): | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
return tokenizer | |
def dummy_text_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=self.text_embedder_hidden_size, | |
projection_dim=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
return CLIPTextModelWithProjection(config) | |
def dummy_prior(self): | |
torch.manual_seed(0) | |
model_kwargs = { | |
"num_attention_heads": 2, | |
"attention_head_dim": 12, | |
"embedding_dim": self.text_embedder_hidden_size, | |
"num_layers": 1, | |
} | |
model = PriorTransformer(**model_kwargs) | |
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 | |
model.clip_std = nn.Parameter(torch.ones(model.clip_std.shape)) | |
return model | |
def dummy_image_encoder(self): | |
torch.manual_seed(0) | |
config = CLIPVisionConfig( | |
hidden_size=self.text_embedder_hidden_size, | |
image_size=224, | |
projection_dim=self.text_embedder_hidden_size, | |
intermediate_size=37, | |
num_attention_heads=4, | |
num_channels=3, | |
num_hidden_layers=5, | |
patch_size=14, | |
) | |
model = CLIPVisionModelWithProjection(config) | |
return model | |
def dummy_image_processor(self): | |
image_processor = CLIPImageProcessor( | |
crop_size=224, | |
do_center_crop=True, | |
do_normalize=True, | |
do_resize=True, | |
image_mean=[0.48145466, 0.4578275, 0.40821073], | |
image_std=[0.26862954, 0.26130258, 0.27577711], | |
resample=3, | |
size=224, | |
) | |
return image_processor | |
def get_dummy_components(self): | |
prior = self.dummy_prior | |
image_encoder = self.dummy_image_encoder | |
text_encoder = self.dummy_text_encoder | |
tokenizer = self.dummy_tokenizer | |
image_processor = self.dummy_image_processor | |
scheduler = UnCLIPScheduler( | |
variance_type="fixed_small_log", | |
prediction_type="sample", | |
num_train_timesteps=1000, | |
clip_sample=True, | |
clip_sample_range=10.0, | |
) | |
components = { | |
"prior": prior, | |
"image_encoder": image_encoder, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"scheduler": scheduler, | |
"image_processor": image_processor, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "horse", | |
"generator": generator, | |
"guidance_scale": 4.0, | |
"num_inference_steps": 2, | |
"output_type": "np", | |
} | |
return inputs | |
class KandinskyPriorPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KandinskyPriorPipeline | |
params = ["prompt"] | |
batch_params = ["prompt", "negative_prompt"] | |
required_optional_params = [ | |
"num_images_per_prompt", | |
"generator", | |
"num_inference_steps", | |
"latents", | |
"negative_prompt", | |
"guidance_scale", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
dummy = Dummies() | |
return dummy.get_dummy_components() | |
def get_dummy_inputs(self, device, seed=0): | |
dummy = Dummies() | |
return dummy.get_dummy_inputs(device=device, seed=seed) | |
def test_kandinsky_prior(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.image_embeds | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -10:] | |
image_from_tuple_slice = image_from_tuple[0, -10:] | |
assert image.shape == (1, 32) | |
expected_slice = np.array( | |
[-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] | |
) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=1e-2) | |
def test_attention_slicing_forward_pass(self): | |
test_max_difference = torch_device == "cpu" | |
test_mean_pixel_difference = False | |
self._test_attention_slicing_forward_pass( | |
test_max_difference=test_max_difference, | |
test_mean_pixel_difference=test_mean_pixel_difference, | |
) | |