pablo
add diffusers fork
a63d2a4
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import torch
from diffusers import (
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
pipeline_class = IFPipeline
params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
def get_dummy_components(self):
return self._get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_save_load_optional_components(self):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
def test_save_load_float16(self):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_float16(expected_max_diff=1e-1)
def test_attention_slicing_forward_pass(self):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)
def test_save_load_local(self):
self._test_save_load_local()
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2,
)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)
@slow
@require_torch_gpu
class IFPipelineSlowTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_all(self):
# if
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
pipe_2 = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None
)
# pre compute text embeddings and remove T5 to save memory
pipe_1.text_encoder.to("cuda")
prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda")
del pipe_1.tokenizer
del pipe_1.text_encoder
gc.collect()
pipe_1.tokenizer = None
pipe_1.text_encoder = None
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
pipe_1.remove_all_hooks()
pipe_2.remove_all_hooks()
# img2img
pipe_1 = IFImg2ImgPipeline(**pipe_1.components)
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components)
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
pipe_1.remove_all_hooks()
pipe_2.remove_all_hooks()
# inpainting
pipe_1 = IFInpaintingPipeline(**pipe_1.components)
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components)
pipe_1.enable_model_cpu_offload()
pipe_2.enable_model_cpu_offload()
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor())
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor())
self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds)
def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
original_image=original_image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds):
# pipeline 1
_start_torch_memory_measurement()
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device)
generator = torch.Generator(device="cpu").manual_seed(0)
output = pipe_1(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
mask_image=mask_image,
num_inference_steps=2,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (64, 64, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy"
)
assert_mean_pixel_difference(image, expected_image)
# pipeline 2
_start_torch_memory_measurement()
generator = torch.Generator(device="cpu").manual_seed(0)
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device)
mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device)
output = pipe_2(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
image=image,
mask_image=mask_image,
original_image=original_image,
generator=generator,
num_inference_steps=2,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
mem_bytes = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy"
)
assert_mean_pixel_difference(image, expected_image)
def _start_torch_memory_measurement():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()