pablo
add diffusers fork
a63d2a4
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = DDIMPipeline
params = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
required_optional_params = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"latents",
"callback",
"callback_steps",
}
batch_params = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
def get_dummy_components(self):
torch.manual_seed(0)
unet = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDIMScheduler()
components = {"unet": unet, "scheduler": scheduler}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"batch_size": 1,
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
self.assertEqual(image.shape, (1, 32, 32, 3))
expected_slice = np.array(
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
)
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
self.assertLessEqual(max_diff, 1e-3)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=3e-3)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
@slow
@require_torch_gpu
class DDIMPipelineIntegrationTests(unittest.TestCase):
def test_inference_cifar10(self):
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler()
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_ema_bedroom(self):
model_id = "google/ddpm-ema-bedroom-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = DDIMScheduler.from_pretrained(model_id)
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
generator = torch.manual_seed(0)
image = ddpm(generator=generator, output_type="numpy").images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
expected_slice = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2