Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import torch | |
| from torch import nn | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from ..utils import BaseOutput | |
| from .attention import BasicTransformerBlock | |
| from .modeling_utils import ModelMixin | |
| class TransformerTemporalModelOutput(BaseOutput): | |
| """ | |
| The output of [`TransformerTemporalModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`): | |
| The hidden states output conditioned on `encoder_hidden_states` input. | |
| """ | |
| sample: torch.FloatTensor | |
| class TransformerTemporalModel(ModelMixin, ConfigMixin): | |
| """ | |
| A Transformer model for video-like data. | |
| Parameters: | |
| num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
| in_channels (`int`, *optional*): | |
| The number of channels in the input and output (specify if the input is **continuous**). | |
| num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
| sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
| This is fixed during training since it is used to learn a number of position embeddings. | |
| activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
| attention_bias (`bool`, *optional*): | |
| Configure if the `TransformerBlock` attention should contain a bias parameter. | |
| double_self_attention (`bool`, *optional*): | |
| Configure if each `TransformerBlock` should contain two self-attention layers. | |
| """ | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| sample_size: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| norm_elementwise_affine: bool = True, | |
| double_self_attention: bool = True, | |
| ): | |
| super().__init__() | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| # 3. Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| double_self_attention=double_self_attention, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, in_channels) | |
| def forward( | |
| self, | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| timestep=None, | |
| class_labels=None, | |
| num_frames=1, | |
| cross_attention_kwargs=None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`TransformerTemporal`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input hidden_states. | |
| encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| timestep ( `torch.long`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: | |
| If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is | |
| returned, otherwise a `tuple` where the first element is the sample tensor. | |
| """ | |
| # 1. Input | |
| batch_frames, channel, height, width = hidden_states.shape | |
| batch_size = batch_frames // num_frames | |
| residual = hidden_states | |
| hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) | |
| hidden_states = hidden_states.permute(0, 2, 1, 3, 4) | |
| hidden_states = self.norm(hidden_states) | |
| hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) | |
| hidden_states = self.proj_in(hidden_states) | |
| # 2. Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| ) | |
| # 3. Output | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states[None, None, :] | |
| .reshape(batch_size, height, width, channel, num_frames) | |
| .permute(0, 3, 4, 1, 2) | |
| .contiguous() | |
| ) | |
| hidden_states = hidden_states.reshape(batch_frames, channel, height, width) | |
| output = hidden_states + residual | |
| if not return_dict: | |
| return (output,) | |
| return TransformerTemporalModelOutput(sample=output) | |