Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Optional, Tuple, Union | |
| import flax | |
| import flax.linen as nn | |
| import jax | |
| import jax.numpy as jnp | |
| from flax.core.frozen_dict import FrozenDict | |
| from ..configuration_utils import ConfigMixin, flax_register_to_config | |
| from ..utils import BaseOutput | |
| from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps | |
| from .modeling_flax_utils import FlaxModelMixin | |
| from .unet_2d_blocks_flax import ( | |
| FlaxCrossAttnDownBlock2D, | |
| FlaxDownBlock2D, | |
| FlaxUNetMidBlock2DCrossAttn, | |
| ) | |
| class FlaxControlNetOutput(BaseOutput): | |
| """ | |
| The output of [`FlaxControlNetModel`]. | |
| Args: | |
| down_block_res_samples (`jnp.ndarray`): | |
| mid_block_res_sample (`jnp.ndarray`): | |
| """ | |
| down_block_res_samples: jnp.ndarray | |
| mid_block_res_sample: jnp.ndarray | |
| class FlaxControlNetConditioningEmbedding(nn.Module): | |
| conditioning_embedding_channels: int | |
| block_out_channels: Tuple[int] = (16, 32, 96, 256) | |
| dtype: jnp.dtype = jnp.float32 | |
| def setup(self): | |
| self.conv_in = nn.Conv( | |
| self.block_out_channels[0], | |
| kernel_size=(3, 3), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| blocks = [] | |
| for i in range(len(self.block_out_channels) - 1): | |
| channel_in = self.block_out_channels[i] | |
| channel_out = self.block_out_channels[i + 1] | |
| conv1 = nn.Conv( | |
| channel_in, | |
| kernel_size=(3, 3), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| blocks.append(conv1) | |
| conv2 = nn.Conv( | |
| channel_out, | |
| kernel_size=(3, 3), | |
| strides=(2, 2), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| blocks.append(conv2) | |
| self.blocks = blocks | |
| self.conv_out = nn.Conv( | |
| self.conditioning_embedding_channels, | |
| kernel_size=(3, 3), | |
| padding=((1, 1), (1, 1)), | |
| kernel_init=nn.initializers.zeros_init(), | |
| bias_init=nn.initializers.zeros_init(), | |
| dtype=self.dtype, | |
| ) | |
| def __call__(self, conditioning): | |
| embedding = self.conv_in(conditioning) | |
| embedding = nn.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = nn.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding | |
| class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin): | |
| r""" | |
| A ControlNet model. | |
| This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods | |
| implemented for all models (such as downloading or saving). | |
| This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module) | |
| subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its | |
| general usage and behavior. | |
| Inherent JAX features such as the following are supported: | |
| - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) | |
| - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) | |
| - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) | |
| - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) | |
| Parameters: | |
| sample_size (`int`, *optional*): | |
| The size of the input sample. | |
| in_channels (`int`, *optional*, defaults to 4): | |
| The number of channels in the input sample. | |
| down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, *optional*, defaults to 2): | |
| The number of layers per block. | |
| attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8): | |
| The dimension of the attention heads. | |
| num_attention_heads (`int` or `Tuple[int]`, *optional*): | |
| The number of attention heads. | |
| cross_attention_dim (`int`, *optional*, defaults to 768): | |
| The dimension of the cross attention features. | |
| dropout (`float`, *optional*, defaults to 0): | |
| Dropout probability for down, up and bottleneck blocks. | |
| flip_sin_to_cos (`bool`, *optional*, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
| controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`): | |
| The channel order of conditional image. Will convert to `rgb` if it's `bgr`. | |
| conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`): | |
| The tuple of output channel for each block in the `conditioning_embedding` layer. | |
| """ | |
| sample_size: int = 32 | |
| in_channels: int = 4 | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ) | |
| only_cross_attention: Union[bool, Tuple[bool]] = False | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280) | |
| layers_per_block: int = 2 | |
| attention_head_dim: Union[int, Tuple[int]] = 8 | |
| num_attention_heads: Optional[Union[int, Tuple[int]]] = None | |
| cross_attention_dim: int = 1280 | |
| dropout: float = 0.0 | |
| use_linear_projection: bool = False | |
| dtype: jnp.dtype = jnp.float32 | |
| flip_sin_to_cos: bool = True | |
| freq_shift: int = 0 | |
| controlnet_conditioning_channel_order: str = "rgb" | |
| conditioning_embedding_out_channels: Tuple[int] = (16, 32, 96, 256) | |
| def init_weights(self, rng: jax.random.KeyArray) -> FrozenDict: | |
| # init input tensors | |
| sample_shape = (1, self.in_channels, self.sample_size, self.sample_size) | |
| sample = jnp.zeros(sample_shape, dtype=jnp.float32) | |
| timesteps = jnp.ones((1,), dtype=jnp.int32) | |
| encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32) | |
| controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8) | |
| controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32) | |
| params_rng, dropout_rng = jax.random.split(rng) | |
| rngs = {"params": params_rng, "dropout": dropout_rng} | |
| return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"] | |
| def setup(self): | |
| block_out_channels = self.block_out_channels | |
| time_embed_dim = block_out_channels[0] * 4 | |
| # If `num_attention_heads` is not defined (which is the case for most models) | |
| # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
| # The reason for this behavior is to correct for incorrectly named variables that were introduced | |
| # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
| # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
| # which is why we correct for the naming here. | |
| num_attention_heads = self.num_attention_heads or self.attention_head_dim | |
| # input | |
| self.conv_in = nn.Conv( | |
| block_out_channels[0], | |
| kernel_size=(3, 3), | |
| strides=(1, 1), | |
| padding=((1, 1), (1, 1)), | |
| dtype=self.dtype, | |
| ) | |
| # time | |
| self.time_proj = FlaxTimesteps( | |
| block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift | |
| ) | |
| self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype) | |
| self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=self.conditioning_embedding_out_channels, | |
| ) | |
| only_cross_attention = self.only_cross_attention | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = (only_cross_attention,) * len(self.down_block_types) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(self.down_block_types) | |
| # down | |
| down_blocks = [] | |
| controlnet_down_blocks = [] | |
| output_channel = block_out_channels[0] | |
| controlnet_block = nn.Conv( | |
| output_channel, | |
| kernel_size=(1, 1), | |
| padding="VALID", | |
| kernel_init=nn.initializers.zeros_init(), | |
| bias_init=nn.initializers.zeros_init(), | |
| dtype=self.dtype, | |
| ) | |
| controlnet_down_blocks.append(controlnet_block) | |
| for i, down_block_type in enumerate(self.down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| if down_block_type == "CrossAttnDownBlock2D": | |
| down_block = FlaxCrossAttnDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| num_attention_heads=num_attention_heads[i], | |
| add_downsample=not is_final_block, | |
| use_linear_projection=self.use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| dtype=self.dtype, | |
| ) | |
| else: | |
| down_block = FlaxDownBlock2D( | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| dropout=self.dropout, | |
| num_layers=self.layers_per_block, | |
| add_downsample=not is_final_block, | |
| dtype=self.dtype, | |
| ) | |
| down_blocks.append(down_block) | |
| for _ in range(self.layers_per_block): | |
| controlnet_block = nn.Conv( | |
| output_channel, | |
| kernel_size=(1, 1), | |
| padding="VALID", | |
| kernel_init=nn.initializers.zeros_init(), | |
| bias_init=nn.initializers.zeros_init(), | |
| dtype=self.dtype, | |
| ) | |
| controlnet_down_blocks.append(controlnet_block) | |
| if not is_final_block: | |
| controlnet_block = nn.Conv( | |
| output_channel, | |
| kernel_size=(1, 1), | |
| padding="VALID", | |
| kernel_init=nn.initializers.zeros_init(), | |
| bias_init=nn.initializers.zeros_init(), | |
| dtype=self.dtype, | |
| ) | |
| controlnet_down_blocks.append(controlnet_block) | |
| self.down_blocks = down_blocks | |
| self.controlnet_down_blocks = controlnet_down_blocks | |
| # mid | |
| mid_block_channel = block_out_channels[-1] | |
| self.mid_block = FlaxUNetMidBlock2DCrossAttn( | |
| in_channels=mid_block_channel, | |
| dropout=self.dropout, | |
| num_attention_heads=num_attention_heads[-1], | |
| use_linear_projection=self.use_linear_projection, | |
| dtype=self.dtype, | |
| ) | |
| self.controlnet_mid_block = nn.Conv( | |
| mid_block_channel, | |
| kernel_size=(1, 1), | |
| padding="VALID", | |
| kernel_init=nn.initializers.zeros_init(), | |
| bias_init=nn.initializers.zeros_init(), | |
| dtype=self.dtype, | |
| ) | |
| def __call__( | |
| self, | |
| sample, | |
| timesteps, | |
| encoder_hidden_states, | |
| controlnet_cond, | |
| conditioning_scale: float = 1.0, | |
| return_dict: bool = True, | |
| train: bool = False, | |
| ) -> Union[FlaxControlNetOutput, Tuple]: | |
| r""" | |
| Args: | |
| sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor | |
| timestep (`jnp.ndarray` or `float` or `int`): timesteps | |
| encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states | |
| controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor | |
| conditioning_scale: (`float`) the scale factor for controlnet outputs | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a | |
| plain tuple. | |
| train (`bool`, *optional*, defaults to `False`): | |
| Use deterministic functions and disable dropout when not training. | |
| Returns: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`: | |
| [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. | |
| When returning a tuple, the first element is the sample tensor. | |
| """ | |
| channel_order = self.controlnet_conditioning_channel_order | |
| if channel_order == "bgr": | |
| controlnet_cond = jnp.flip(controlnet_cond, axis=1) | |
| # 1. time | |
| if not isinstance(timesteps, jnp.ndarray): | |
| timesteps = jnp.array([timesteps], dtype=jnp.int32) | |
| elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0: | |
| timesteps = timesteps.astype(dtype=jnp.float32) | |
| timesteps = jnp.expand_dims(timesteps, 0) | |
| t_emb = self.time_proj(timesteps) | |
| t_emb = self.time_embedding(t_emb) | |
| # 2. pre-process | |
| sample = jnp.transpose(sample, (0, 2, 3, 1)) | |
| sample = self.conv_in(sample) | |
| controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1)) | |
| controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
| sample += controlnet_cond | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for down_block in self.down_blocks: | |
| if isinstance(down_block, FlaxCrossAttnDownBlock2D): | |
| sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
| else: | |
| sample, res_samples = down_block(sample, t_emb, deterministic=not train) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train) | |
| # 5. contronet blocks | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample *= conditioning_scale | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return FlaxControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
| ) | |